Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 120729 by help last updated on 02/Nov/20

Answered by TANMAY PANACEA last updated on 02/Nov/20

LHS  ((1−cos2θ)/2)+((1−cos(2θ+2α))/2)+((1−cos(2θ+4α))/2)  =(3/2)−(1/2){cos2θ+cos(2θ+4α)+cos(2θ+2α)}  =(3/2)−(1/2){2cos(((2θ+2θ+4α)/2))cos(((2θ+4α−2θ)/2))+cos(2θ+2α)}  =(3/2)−(1/2)cos(2θ+2α){(2cos2α)+1}

LHS1cos2θ2+1cos(2θ+2α)2+1cos(2θ+4α)2=3212{cos2θ+cos(2θ+4α)+cos(2θ+2α)}=3212{2cos(2θ+2θ+4α2)cos(2θ+4α2θ2)+cos(2θ+2α)}=3212cos(2θ+2α){(2cos2α)+1}

Commented by TANMAY PANACEA last updated on 02/Nov/20

(3/2)−(1/2)cos(2θ+2×((2π)/3)){1+2cos2×((2π)/3)}  =(3/2)−(1/2){cos(2θ)cos(240^o )−sin2θsin240^o }{1+2cos240^o }  =(3/2)−(1/2){cos2θ×((−1)/2)−sin2θ×((√3)/2)}{1+2×((−1)/2)}  =(3/2)−(1/2){((−cos2θ−(√3) sin2θ)/2)}{0}  =(3/2)

3212cos(2θ+2×2π3){1+2cos2×2π3}=3212{cos(2θ)cos(240o)sin2θsin240o}{1+2cos240o}=3212{cos2θ×12sin2θ×32}{1+2×12}=3212{cos2θ3sin2θ2}{0}=32

Commented by help last updated on 02/Nov/20

many thanks

manythanks

Commented by TANMAY PANACEA last updated on 02/Nov/20

most welcome

mostwelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com