Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 120761 by bramlexs22 last updated on 02/Nov/20

    ∫ tan^(−1) ((√((1−x)/(1+x))) ) dx ?

tan1(1x1+x)dx?

Answered by liberty last updated on 02/Nov/20

We put x = cos ψ ⇒dx = −sin ψ dψ  ∫ tan^(−1)  (√((1−cos ψ)/(1+cos ψ))) (−sin ψ dψ) =  ∫ tan^(−1) (√((2sin^2 (ψ/2))/(2cos^2 (ψ/2)))) (−sin ψ dψ )=  ∫ tan^(−1) (tan (ψ/2))(−sin ψ dψ) =  ∫ −((ψ/2))sin ψ dψ = −(1/2)[ −ψ cos ψ+sin ψ ] +c   =−(1/2)[ −x cos^(−1) (x)+(√(1−x^2 )) ] + c

Weputx=cosψdx=sinψdψtan11cosψ1+cosψ(sinψdψ)=tan12sin2(ψ/2)2cos2(ψ/2)(sinψdψ)=tan1(tan(ψ/2))(sinψdψ)=(ψ2)sinψdψ=12[ψcosψ+sinψ]+c=12[xcos1(x)+1x2]+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com