All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 120774 by mnjuly1970 last updated on 02/Nov/20
...advancedcalculus...provethat::Ω=∫01ln(x)1−x33dx=???−π33(ln(3)+π33)...m.n.1970...
Answered by mindispower last updated on 02/Nov/20
letx3=t⇒dx=t−213dt3⇒Ω=13∫01ln(t13)(1−t)13.t−213dt3Ω=19∫01(1−t)−13t−213ln(t)dtln(t)=∂∂axa∣x=0Ω=∂a19∫01(1−t)13t−23+adt9Ω=∂∂aβ(23,13+a)∣a=0∂∂yβ(x,y)=β(x,y)[Ψ(y)−Ψ(x+y)]∂β∂a=β(23,13+a)[Ψ(13+a)−Ψ(1+a)]9Ω=β(13,23)[Ψ(13)−Ψ(1)]GaussetheoremΨ(pq)=−γ−ln(2q)−π2cot(pπq)+2∑[q−12]n=1cos(2πnpq)ln(sin(nπq))Ψ(13)=−γ−ln(6)−π2.13−ln(32)=−γ−ln(33)−π23Ψ(1)=−γβ(13,23)=Γ(13)Γ(23)Γ(2)=.Γ(13)Γ(23)=πsin(π3)=2π39Ω=2π3(−γ−ln(33)−π23+γ)=2π3(−ln(33)−π23)Ω=−π27(−3ln(27)−π)=−π27(π+3ln(27))
Commented by mnjuly1970 last updated on 03/Nov/20
thanksalotsirmindspowerpeacebeuponyou...
Commented by mindispower last updated on 03/Nov/20
withepleasursirhaveaniceDay
Terms of Service
Privacy Policy
Contact: info@tinkutara.com