Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 120774 by mnjuly1970 last updated on 02/Nov/20

          ...advanced  calculus...         prove  that ::                Ω=∫_0 ^( 1) ((ln(x))/( ((1−x^3 ))^(1/3) ))dx=^(???) −(π/(3(√3)))(ln(3)+(π/(3(√3))))                      ...m.n.1970...

$$\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:{calculus}... \\ $$$$\:\:\:\:\:\:\:{prove}\:\:{that}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\mathrm{1}} \frac{{ln}\left({x}\right)}{\:\sqrt[{\mathrm{3}}]{\mathrm{1}−{x}^{\mathrm{3}} }}{dx}\overset{???} {=}−\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\left({ln}\left(\mathrm{3}\right)+\frac{\pi}{\mathrm{3}\sqrt{\mathrm{3}}}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{m}.{n}.\mathrm{1970}... \\ $$

Answered by mindispower last updated on 02/Nov/20

let x^3 =t⇒dx=t^(−2(1/3)) (dt/3)  ⇒Ω=(1/3)∫_0 ^1 ((ln(t^(1/3) ))/((1−t)^(1/3) )).t^(−2(1/3)) (dt/3)  Ω=(1/9)∫_0 ^1 (1−t)^(−(1/3)) t^(−2(1/3)) ln(t)dt  ln(t)=(∂/∂a)x^a ∣_(x=0)   Ω=∂_a (1/9)∫_0 ^1 (1−t)^(1/3) t^(−(2/3)+a) dt  9Ω=(∂/∂a)β((2/3),(1/3)+a)∣_(a=0)   (∂/∂y)β(x,y)=β(x,y)[Ψ(y)−Ψ(x+y)]  (∂β/∂a)=β((2/3) ,(1/3)+a)[Ψ((1/3) +a)−Ψ(1+a)]  9Ω=β((1/3),(2/3))[Ψ((1/3))−Ψ(1)]  Gausse theorem  Ψ((p/q))=−γ−ln(2q)−(π/2)cot(((pπ)/q))+2Σ_(n=1) ^([((q−1)/2)]) cos(((2πnp)/q))ln(sin(((nπ)/q)))  Ψ((1/3))=−γ−ln(6)−(π/2).(1/( (√3)))−ln(((√3)/2))  =−γ−ln(3(√3))−(π/(2(√3)))  Ψ(1)=−γ  β((1/3),(2/3))=((Γ((1/3))Γ((2/3)))/(Γ(2)))=.Γ((1/3))Γ((2/3))=(π/(sin((π/3))))  =((2π)/( (√3)))  9Ω=((2π)/( (√3)))(−γ−ln(3(√3))−(π/(2(√3)))+γ)  =((2π)/( (√3)))(−ln(3(√3))−(π/(2(√3))))  Ω=−(π/(27))(−(√3)ln(27)−π)=−(π/(27))(π+(√3) ln(27))

$${let}\:{x}^{\mathrm{3}} ={t}\Rightarrow{dx}={t}^{−\mathrm{2}\frac{\mathrm{1}}{\mathrm{3}}} \frac{{dt}}{\mathrm{3}} \\ $$$$\Rightarrow\Omega=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}\left({t}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)}{\left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} }.{t}^{−\mathrm{2}\frac{\mathrm{1}}{\mathrm{3}}} \frac{{dt}}{\mathrm{3}} \\ $$$$\Omega=\frac{\mathrm{1}}{\mathrm{9}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{−\frac{\mathrm{1}}{\mathrm{3}}} {t}^{−\mathrm{2}\frac{\mathrm{1}}{\mathrm{3}}} {ln}\left({t}\right){dt} \\ $$$${ln}\left({t}\right)=\frac{\partial}{\partial{a}}{x}^{{a}} \mid_{{x}=\mathrm{0}} \\ $$$$\Omega=\partial_{{a}} \frac{\mathrm{1}}{\mathrm{9}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} {t}^{−\frac{\mathrm{2}}{\mathrm{3}}+{a}} {dt} \\ $$$$\mathrm{9}\Omega=\frac{\partial}{\partial{a}}\beta\left(\frac{\mathrm{2}}{\mathrm{3}},\frac{\mathrm{1}}{\mathrm{3}}+{a}\right)\mid_{{a}=\mathrm{0}} \\ $$$$\frac{\partial}{\partial{y}}\beta\left({x},{y}\right)=\beta\left({x},{y}\right)\left[\Psi\left({y}\right)−\Psi\left({x}+{y}\right)\right] \\ $$$$\frac{\partial\beta}{\partial{a}}=\beta\left(\frac{\mathrm{2}}{\mathrm{3}}\:,\frac{\mathrm{1}}{\mathrm{3}}+{a}\right)\left[\Psi\left(\frac{\mathrm{1}}{\mathrm{3}}\:+{a}\right)−\Psi\left(\mathrm{1}+{a}\right)\right] \\ $$$$\mathrm{9}\Omega=\beta\left(\frac{\mathrm{1}}{\mathrm{3}},\frac{\mathrm{2}}{\mathrm{3}}\right)\left[\Psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)−\Psi\left(\mathrm{1}\right)\right] \\ $$$${Gausse}\:{theorem} \\ $$$$\Psi\left(\frac{{p}}{{q}}\right)=−\gamma−{ln}\left(\mathrm{2}{q}\right)−\frac{\pi}{\mathrm{2}}{cot}\left(\frac{{p}\pi}{{q}}\right)+\mathrm{2}\underset{{n}=\mathrm{1}} {\overset{\left[\frac{{q}−\mathrm{1}}{\mathrm{2}}\right]} {\sum}}{cos}\left(\frac{\mathrm{2}\pi{np}}{{q}}\right){ln}\left({sin}\left(\frac{{n}\pi}{{q}}\right)\right) \\ $$$$\Psi\left(\frac{\mathrm{1}}{\mathrm{3}}\right)=−\gamma−{ln}\left(\mathrm{6}\right)−\frac{\pi}{\mathrm{2}}.\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}−{ln}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$=−\gamma−{ln}\left(\mathrm{3}\sqrt{\mathrm{3}}\right)−\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}} \\ $$$$\Psi\left(\mathrm{1}\right)=−\gamma \\ $$$$\beta\left(\frac{\mathrm{1}}{\mathrm{3}},\frac{\mathrm{2}}{\mathrm{3}}\right)=\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)}{\Gamma\left(\mathrm{2}\right)}=.\Gamma\left(\frac{\mathrm{1}}{\mathrm{3}}\right)\Gamma\left(\frac{\mathrm{2}}{\mathrm{3}}\right)=\frac{\pi}{{sin}\left(\frac{\pi}{\mathrm{3}}\right)} \\ $$$$=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}} \\ $$$$\mathrm{9}\Omega=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\left(−\gamma−{ln}\left(\mathrm{3}\sqrt{\mathrm{3}}\right)−\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}+\gamma\right) \\ $$$$=\frac{\mathrm{2}\pi}{\:\sqrt{\mathrm{3}}}\left(−{ln}\left(\mathrm{3}\sqrt{\mathrm{3}}\right)−\frac{\pi}{\mathrm{2}\sqrt{\mathrm{3}}}\right) \\ $$$$\Omega=−\frac{\pi}{\mathrm{27}}\left(−\sqrt{\mathrm{3}}{ln}\left(\mathrm{27}\right)−\pi\right)=−\frac{\pi}{\mathrm{27}}\left(\pi+\sqrt{\mathrm{3}}\:{ln}\left(\mathrm{27}\right)\right) \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 03/Nov/20

thanks alot sir mindspower   peace  be upon you...

$${thanks}\:{alot}\:{sir}\:{mindspower} \\ $$$$\:{peace}\:\:{be}\:{upon}\:{you}... \\ $$

Commented by mindispower last updated on 03/Nov/20

withe  pleasur sir have a nice Day

$${withe}\:\:{pleasur}\:{sir}\:{have}\:{a}\:{nice}\:{Day} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com