Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 120775 by mnjuly1970 last updated on 02/Nov/20

              ...advanced  calculus...      evaluate ::                        Φ=^(???) ∫_0 ^( 1) ln(x)tan^(−1) (x)dx           ...m.n.1970...

...advancedcalculus...evaluate::Φ=???01ln(x)tan1(x)dx...m.n.1970...

Answered by Dwaipayan Shikari last updated on 02/Nov/20

∫tan^(−1) x dx  =xtan^(−1) x−∫(x/(1+x^2 ))  =xtan^(−1) x−log((√(1+x^2 )))      (logx∫_0 ^1 tan^(−1) (x)dx=0)  Φ=[log(x)∫_0 ^1 tan^(−1) x]−∫_0 ^1 tan^(−1) x+(1/2)∫_0 ^1 ((log(1+x^2 ))/x)  Φ=−[xtan^(−1) x−log((√(1+x^2 )))]+(1/2)∫_0 ^1 Σ_(n=1) ^∞ (−1)^(n+1) x^(2n−1) .(1/n)  Φ=−(π/4)+(1/2)log(2)+(1/2)Σ_(n=1) ^∞ (−1)^(n+1) ∫_0 ^1 x^(2n−1) .(1/n)dx  Φ=−(π/4)+(1/2)log(2)+(1/2)Σ_(n=1) ^∞ (−1)^(n+1) (1/(2n^2 ))  Φ=−(π/4)+(1/2)log(2)+(π^2 /(48))

tan1xdx=xtan1xx1+x2=xtan1xlog(1+x2)(logx01tan1(x)dx=0)Φ=[log(x)01tan1x]01tan1x+1201log(1+x2)xΦ=[xtan1xlog(1+x2)]+1201n=1(1)n+1x2n1.1nΦ=π4+12log(2)+12n=1(1)n+101x2n1.1ndxΦ=π4+12log(2)+12n=1(1)n+112n2Φ=π4+12log(2)+π248

Commented by mnjuly1970 last updated on 02/Nov/20

thank you so much mr dwaipayanexcellent

thankyousomuchmrdwaipayanexcellent

Commented by Dwaipayan Shikari last updated on 03/Nov/20

With pleasure

Withpleasure

Answered by mindispower last updated on 02/Nov/20

=[(xln(x)−x)tan^− (x)]_0 ^1 −∫_0 ^1 ((xln(x)−x)/(1+x^2 ))dx  =−tan^− (1)+∫_0 ^1 (x/(1+x^2 ))dx−∫_0 ^1 (x/(1+x^2 ))ln(x)dx  −(π/4)+((ln(2))/2)−Σ_(k≥0) ∫_0 ^1 (−1)^k x^(2k+1) ln(x)dx  =−(π/4)+((ln(2))/2)−Σ_(k≥0) (−1)^k (−(1/((2k+2)^2 )))  =−(π/4)+((ln(2))/2)+(1/4)Σ_(k≥0) (((−1)^k )/((k+1)^2 ))  =−(π/4)+((ln(2))/2)+(1/4)[(π^2 /(12))]  =((−12π+π^2 +24ln(2))/(48))

=[(xln(x)x)tan(x)]0101xln(x)x1+x2dx=tan(1)+01x1+x2dx01x1+x2ln(x)dxπ4+ln(2)2k001(1)kx2k+1ln(x)dx=π4+ln(2)2k0(1)k(1(2k+2)2)=π4+ln(2)2+14k0(1)k(k+1)2=π4+ln(2)2+14[π212]=12π+π2+24ln(2)48

Commented by mnjuly1970 last updated on 02/Nov/20

very nice sir mindspower  grateful..

verynicesirmindspowergrateful..

Commented by mindispower last updated on 03/Nov/20

thanx withe pleasur nice day sir

thanxwithepleasurnicedaysir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com