Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 120780 by mathace last updated on 02/Nov/20

solve x^2^x  =−(1/2)

$${solve}\:{x}^{\mathrm{2}^{{x}} } =−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Commented by Anuragkar last updated on 02/Nov/20

Use  Lambert W function to work it out......

$${Use}\:\:{Lambert}\:{W}\:{function}\:{to}\:{work}\:{it}\:{out}...... \\ $$

Commented by Dwaipayan Shikari last updated on 02/Nov/20

Complex solution (x∈C).No real solution

$${Complex}\:{solution}\:\left({x}\in\mathbb{C}\right).{No}\:{real}\:{solution} \\ $$

Answered by Anuragkar last updated on 14/Nov/20

2^x ln(x)=ln(e^(iπ) )−ln(2)  xln(x)ln(2)=ln(iπ−ln(2))  ln(x)e^(ln(x)) =ln(iπ−ln(2))/ln(2)  Now use lambert W function  W(ln(x)e^(ln(x)) )=ln(x)=W[ln{iπ−ln(2)}/ln(2)]      x=e^(W[ln{iπ−ln(2)}/ln(2)])     .....this is the final answer....calculstw it using   Wolframalpha

$$\mathrm{2}^{{x}} {ln}\left({x}\right)={ln}\left({e}^{{i}\pi} \right)−{ln}\left(\mathrm{2}\right) \\ $$$${xln}\left({x}\right){ln}\left(\mathrm{2}\right)={ln}\left({i}\pi−{ln}\left(\mathrm{2}\right)\right) \\ $$$${ln}\left({x}\right){e}^{{ln}\left({x}\right)} ={ln}\left({i}\pi−{ln}\left(\mathrm{2}\right)\right)/{ln}\left(\mathrm{2}\right) \\ $$$${Now}\:{use}\:{lambert}\:{W}\:{function} \\ $$$${W}\left({ln}\left({x}\right){e}^{{ln}\left({x}\right)} \right)={ln}\left({x}\right)={W}\left[{ln}\left\{{i}\pi−{ln}\left(\mathrm{2}\right)\right\}/{ln}\left(\mathrm{2}\right)\right] \\ $$$$ \\ $$$$ \\ $$$${x}={e}^{{W}\left[{ln}\left\{{i}\pi−{ln}\left(\mathrm{2}\right)\right\}/{ln}\left(\mathrm{2}\right)\right]} \\ $$$$ \\ $$$$.....{this}\:{is}\:{the}\:{final}\:{answer}....{calculstw}\:{it}\:{using}\: \\ $$$${Wolframalpha} \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 13/Nov/20

Error in second line

$${Error}\:{in}\:{second}\:{line} \\ $$

Answered by mathace last updated on 18/Nov/20

  x^2^x  =−(1/2)  2^x ln(x)=ln(e^(iπ) )−ln(2)  e^(xln (2)) ln(x)=iπ−ln(2)  ln(e^(xln (2)) ln (x))=ln (iπ−ln (2))  xln (2)+ln (ln (x))=ln (iπ−ln (2))  e^e^t  α+t=β where α=ln (2), β=ln (iπ−ln (2))  α+te^(−e^t ) =βe^(−e^t )   (t−β)e^(−e^t ) =−α  (t−β)e^(−(1+t+O(t^2 )) ) = −α  (t−β)e^(−(1+t) ) = −α  (t−β)e^(−t) =((−α)/e^(−1) )=−αe  (β−t)e^(−t) =αe  (β−t)e^(−t) e^β =αe^(β+1)   (β−t)e^(β−t) =αe^(β+1)   W((β−t)e^(β−t) )=W(αe^(β+1) )  β−t=W(αe^(β+1) )  t=β−W(αe^(β+1) )  Now recalling  x=e^e^t    x=e^e^(β−W(αe^(β+1) ))    Recalling the value of α and β, we get  the required solution.  (Omar)

$$ \\ $$$${x}^{\mathrm{2}^{{x}} } =−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{2}^{{x}} \mathrm{ln}\left({x}\right)=\mathrm{ln}\left({e}^{{i}\pi} \right)−\mathrm{ln}\left(\mathrm{2}\right) \\ $$$${e}^{{x}\mathrm{ln}\:\left(\mathrm{2}\right)} \mathrm{ln}\left({x}\right)={i}\pi−\mathrm{ln}\left(\mathrm{2}\right) \\ $$$$\mathrm{ln}\left({e}^{{x}\mathrm{ln}\:\left(\mathrm{2}\right)} \mathrm{ln}\:\left({x}\right)\right)=\mathrm{ln}\:\left({i}\pi−\mathrm{ln}\:\left(\mathrm{2}\right)\right) \\ $$$${x}\mathrm{ln}\:\left(\mathrm{2}\right)+\mathrm{ln}\:\left(\mathrm{ln}\:\left({x}\right)\right)=\mathrm{ln}\:\left({i}\pi−\mathrm{ln}\:\left(\mathrm{2}\right)\right) \\ $$$${e}^{{e}^{{t}} } \alpha+{t}=\beta\:{where}\:\alpha=\mathrm{ln}\:\left(\mathrm{2}\right),\:\beta=\mathrm{ln}\:\left({i}\pi−\mathrm{ln}\:\left(\mathrm{2}\right)\right) \\ $$$$\alpha+{te}^{−{e}^{{t}} } =\beta{e}^{−{e}^{{t}} } \\ $$$$\left({t}−\beta\right){e}^{−{e}^{{t}} } =−\alpha \\ $$$$\left({t}−\beta\right){e}^{−\left(\mathrm{1}+{t}+{O}\left({t}^{\mathrm{2}} \right)\right)\:} =\:−\alpha \\ $$$$\left({t}−\beta\right){e}^{−\left(\mathrm{1}+{t}\right)\:} =\:−\alpha \\ $$$$\left({t}−\beta\right){e}^{−{t}} =\frac{−\alpha}{{e}^{−\mathrm{1}} }=−\alpha{e} \\ $$$$\left(\beta−{t}\right){e}^{−{t}} =\alpha{e} \\ $$$$\left(\beta−{t}\right){e}^{−{t}} {e}^{\beta} =\alpha{e}^{\beta+\mathrm{1}} \\ $$$$\left(\beta−{t}\right){e}^{\beta−{t}} =\alpha{e}^{\beta+\mathrm{1}} \\ $$$${W}\left(\left(\beta−{t}\right){e}^{\beta−{t}} \right)={W}\left(\alpha{e}^{\beta+\mathrm{1}} \right) \\ $$$$\beta−{t}={W}\left(\alpha{e}^{\beta+\mathrm{1}} \right) \\ $$$${t}=\beta−{W}\left(\alpha{e}^{\beta+\mathrm{1}} \right) \\ $$$${Now}\:{recalling} \\ $$$${x}={e}^{{e}^{{t}} } \\ $$$${x}={e}^{{e}^{\beta−{W}\left(\alpha{e}^{\beta+\mathrm{1}} \right)} } \\ $$$${Recalling}\:{the}\:{value}\:{of}\:\alpha\:{and}\:\beta,\:{we}\:{get} \\ $$$${the}\:{required}\:{solution}. \\ $$$$\left({Omar}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com