Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 120809 by liberty last updated on 02/Nov/20

Find the largest number of positive  integers that can be found in such a way  that any two of them a and b ( a≠b)   satisfy the next inequality ∣a−b∣≥((ab)/(100))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{largest}\:\mathrm{number}\:\mathrm{of}\:\mathrm{positive} \\ $$$$\mathrm{integers}\:\mathrm{that}\:\mathrm{can}\:\mathrm{be}\:\mathrm{found}\:\mathrm{in}\:\mathrm{such}\:\mathrm{a}\:\mathrm{way} \\ $$$$\mathrm{that}\:\mathrm{any}\:\mathrm{two}\:\mathrm{of}\:\mathrm{them}\:{a}\:\mathrm{and}\:{b}\:\left(\:{a}\neq{b}\right)\: \\ $$$$\mathrm{satisfy}\:\mathrm{the}\:\mathrm{next}\:\mathrm{inequality}\:\mid{a}−{b}\mid\geqslant\frac{{ab}}{\mathrm{100}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com