Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 120929 by Canovas last updated on 04/Nov/20

Commented by Canovas last updated on 04/Nov/20

   Please help me on number 11 and 15

$$\:\:\:{Please}\:{help}\:{me}\:{on}\:{number}\:\mathrm{11}\:{and}\:\mathrm{15} \\ $$$$ \\ $$

Commented by liberty last updated on 04/Nov/20

it is better if you write

Answered by Ar Brandon last updated on 04/Nov/20

15.  ax^2 +bx+c=0  Let the roots be α and 2α  SumOfRoots:3α=−(b/a)⇒α=−(b/(3a))  ProductOfRoots:2α^2 =(c/a)  ⇒2((b/(3a)))^2 =(c/a) ⇒ 2b^2 =9ac

$$\mathrm{15}. \\ $$$$\mathrm{ax}^{\mathrm{2}} +\mathrm{bx}+\mathrm{c}=\mathrm{0} \\ $$$$\mathrm{Let}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{be}\:\alpha\:\mathrm{and}\:\mathrm{2}\alpha \\ $$$$\mathrm{SumOfRoots}:\mathrm{3}\alpha=−\frac{\mathrm{b}}{\mathrm{a}}\Rightarrow\alpha=−\frac{\mathrm{b}}{\mathrm{3a}} \\ $$$$\mathrm{ProductOfRoots}:\mathrm{2}\alpha^{\mathrm{2}} =\frac{\mathrm{c}}{\mathrm{a}} \\ $$$$\Rightarrow\mathrm{2}\left(\frac{\mathrm{b}}{\mathrm{3a}}\right)^{\mathrm{2}} =\frac{\mathrm{c}}{\mathrm{a}}\:\Rightarrow\:\mathrm{2b}^{\mathrm{2}} =\mathrm{9ac} \\ $$

Answered by Ar Brandon last updated on 04/Nov/20

11.  x^2 +2px+q=0  Let roots be β and β+2  SumOfRoots: 2β+2=−2p⇒β=−(p+1)  ProductOfRoots: β^2 +2β=q  ⇒(p+1)^2 −2(p+1)=q  ⇒(p+1)(p+1−2)=q  ⇒(p+1)(p−1)=q  ⇒p^2 −1=q, p^2 =1+q

$$\mathrm{11}. \\ $$$$\mathrm{x}^{\mathrm{2}} +\mathrm{2px}+\mathrm{q}=\mathrm{0} \\ $$$$\mathrm{Let}\:\mathrm{roots}\:\mathrm{be}\:\beta\:\mathrm{and}\:\beta+\mathrm{2} \\ $$$$\mathrm{SumOfRoots}:\:\mathrm{2}\beta+\mathrm{2}=−\mathrm{2p}\Rightarrow\beta=−\left(\mathrm{p}+\mathrm{1}\right) \\ $$$$\mathrm{ProductOfRoots}:\:\beta^{\mathrm{2}} +\mathrm{2}\beta=\mathrm{q} \\ $$$$\Rightarrow\left(\mathrm{p}+\mathrm{1}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{p}+\mathrm{1}\right)=\mathrm{q} \\ $$$$\Rightarrow\left(\mathrm{p}+\mathrm{1}\right)\left(\mathrm{p}+\mathrm{1}−\mathrm{2}\right)=\mathrm{q} \\ $$$$\Rightarrow\left(\mathrm{p}+\mathrm{1}\right)\left(\mathrm{p}−\mathrm{1}\right)=\mathrm{q} \\ $$$$\Rightarrow\mathrm{p}^{\mathrm{2}} −\mathrm{1}=\mathrm{q},\:\mathrm{p}^{\mathrm{2}} =\mathrm{1}+\mathrm{q} \\ $$

Answered by ebi last updated on 04/Nov/20

Q11  x^2 +2px+q=0  to show p^2 =1+q    let α and β are the roots of the  equation  given that,  α−β=2 →β=α−2    thus,  x^2 −(α+β)x+αβ=0  x^2 −(α+α−2)x+(α−2)α=0  x^2 −(2α−2)x+(α^2 −2α)=0    2α−2=−2p → α=1−p.....(1)  α^2 −2α=q......(2)    substitute (1) into (2)  (1−p)^2 −2(1−p)=q  1−2p+p^2 −2+2p=q  p^2 −1=q  p^2 =1+q (shown)

$${Q}\mathrm{11} \\ $$$${x}^{\mathrm{2}} +\mathrm{2}{px}+{q}=\mathrm{0} \\ $$$${to}\:{show}\:{p}^{\mathrm{2}} =\mathrm{1}+{q} \\ $$$$ \\ $$$${let}\:\alpha\:{and}\:\beta\:{are}\:{the}\:{roots}\:{of}\:{the} \\ $$$${equation} \\ $$$${given}\:{that}, \\ $$$$\alpha−\beta=\mathrm{2}\:\rightarrow\beta=\alpha−\mathrm{2} \\ $$$$ \\ $$$${thus}, \\ $$$${x}^{\mathrm{2}} −\left(\alpha+\beta\right){x}+\alpha\beta=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\left(\alpha+\alpha−\mathrm{2}\right){x}+\left(\alpha−\mathrm{2}\right)\alpha=\mathrm{0} \\ $$$${x}^{\mathrm{2}} −\left(\mathrm{2}\alpha−\mathrm{2}\right){x}+\left(\alpha^{\mathrm{2}} −\mathrm{2}\alpha\right)=\mathrm{0} \\ $$$$ \\ $$$$\mathrm{2}\alpha−\mathrm{2}=−\mathrm{2}{p}\:\rightarrow\:\alpha=\mathrm{1}−{p}.....\left(\mathrm{1}\right) \\ $$$$\alpha^{\mathrm{2}} −\mathrm{2}\alpha={q}......\left(\mathrm{2}\right) \\ $$$$ \\ $$$${substitute}\:\left(\mathrm{1}\right)\:{into}\:\left(\mathrm{2}\right) \\ $$$$\left(\mathrm{1}−{p}\right)^{\mathrm{2}} −\mathrm{2}\left(\mathrm{1}−{p}\right)={q} \\ $$$$\mathrm{1}−\mathrm{2}{p}+{p}^{\mathrm{2}} −\mathrm{2}+\mathrm{2}{p}={q} \\ $$$${p}^{\mathrm{2}} −\mathrm{1}={q} \\ $$$${p}^{\mathrm{2}} =\mathrm{1}+{q}\:\left({shown}\right) \\ $$

Answered by ebi last updated on 04/Nov/20

Q15  ax^2 +bx+c=0  x^2 +((b/a))x+((c/a))=0  to show: 2b^2 −9ac    let α and β are the roots of the  equation.  given that  α=2β    thus,  x−(α+β)x+αβ=0  x−(2β+β)x+(2β)β=0  x−(3β)x+(2β^2 )=0  3β=−(b/a) → β=−(b/(3a)).....(1)  2β^2 =(c/a).....(2)    substitute (1) into (2)  2(−(b/(3a)))^2 =(c/a)  2((b^2 /(9a^2 )))=(c/a)  2b^2 =9ac → 2b^2 −9ac=0 (shown)

$${Q}\mathrm{15} \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0} \\ $$$${x}^{\mathrm{2}} +\left(\frac{{b}}{{a}}\right){x}+\left(\frac{{c}}{{a}}\right)=\mathrm{0} \\ $$$${to}\:{show}:\:\mathrm{2}{b}^{\mathrm{2}} −\mathrm{9}{ac} \\ $$$$ \\ $$$${let}\:\alpha\:{and}\:\beta\:{are}\:{the}\:{roots}\:{of}\:{the} \\ $$$${equation}. \\ $$$${given}\:{that} \\ $$$$\alpha=\mathrm{2}\beta \\ $$$$ \\ $$$${thus}, \\ $$$${x}−\left(\alpha+\beta\right){x}+\alpha\beta=\mathrm{0} \\ $$$${x}−\left(\mathrm{2}\beta+\beta\right){x}+\left(\mathrm{2}\beta\right)\beta=\mathrm{0} \\ $$$${x}−\left(\mathrm{3}\beta\right){x}+\left(\mathrm{2}\beta^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\mathrm{3}\beta=−\frac{{b}}{{a}}\:\rightarrow\:\beta=−\frac{{b}}{\mathrm{3}{a}}.....\left(\mathrm{1}\right) \\ $$$$\mathrm{2}\beta^{\mathrm{2}} =\frac{{c}}{{a}}.....\left(\mathrm{2}\right) \\ $$$$ \\ $$$${substitute}\:\left(\mathrm{1}\right)\:{into}\:\left(\mathrm{2}\right) \\ $$$$\mathrm{2}\left(−\frac{{b}}{\mathrm{3}{a}}\right)^{\mathrm{2}} =\frac{{c}}{{a}} \\ $$$$\mathrm{2}\left(\frac{{b}^{\mathrm{2}} }{\mathrm{9}{a}^{\mathrm{2}} }\right)=\frac{{c}}{{a}} \\ $$$$\mathrm{2}{b}^{\mathrm{2}} =\mathrm{9}{ac}\:\rightarrow\:\mathrm{2}{b}^{\mathrm{2}} −\mathrm{9}{ac}=\mathrm{0}\:\left({shown}\right) \\ $$

Answered by mindispower last updated on 04/Nov/20

X^2 +2pX+q=0..E  let a,b roots of  b−a=2  we have b+a=−2p⇒p=−(((b+a)/2))  ab=q,p^2 =(1/4)(b^2 +a^2 +2ab)=(1/4)((b−a)^2 +4ab)  =(1/4)(2^2 +4q)=1+q=p^2

$${X}^{\mathrm{2}} +\mathrm{2}{pX}+{q}=\mathrm{0}..{E} \\ $$$${let}\:{a},{b}\:{roots}\:{of}\:\:{b}−{a}=\mathrm{2} \\ $$$${we}\:{have}\:{b}+{a}=−\mathrm{2}{p}\Rightarrow{p}=−\left(\frac{{b}+{a}}{\mathrm{2}}\right) \\ $$$${ab}={q},{p}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{4}}\left({b}^{\mathrm{2}} +{a}^{\mathrm{2}} +\mathrm{2}{ab}\right)=\frac{\mathrm{1}}{\mathrm{4}}\left(\left({b}−{a}\right)^{\mathrm{2}} +\mathrm{4}{ab}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{2}^{\mathrm{2}} +\mathrm{4}{q}\right)=\mathrm{1}+{q}={p}^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com