All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 120970 by Algoritm last updated on 04/Nov/20
Answered by mathmax by abdo last updated on 04/Nov/20
I=∫0πln(1+cosx2)cosxdxletf(a)=∫0πln(1+acosx)cosxdxwith∣a∣<1I=f(12)wehsvef′(a)=∫0πdx1+acosx=tan(x2)=t∫0∞2dt(1+t2)(1+a1−t21+t2)=∫0∞2dt1+t2+a−at2=∫0∞2dt1+a+(1−a)t2=21−a∫0∞dtt2+1+a1−a=t=1+a1−az21−a.1−a1+a∫0∞1z2+11+a1−adz=21−a2×π2=π1−a2⇒f(a)=πarcsin(a)+cf(0)=0=0+c⇒c=0⇒f(a)=πarcsin(a)⇒I=f(12)=πarcsin(12)=π26
Terms of Service
Privacy Policy
Contact: info@tinkutara.com