Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 12098 by Nayon last updated on 13/Apr/17

Evaluate ∫(√(x^2 −a^2 ))dx

$${Evaluate}\:\int\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }{dx} \\ $$$$ \\ $$$$ \\ $$

Answered by sma3l2996 last updated on 13/Apr/17

A=∫(√(x^2 −a^2 ))dx=a∫(√(((x/a))^2 −1))dx  let u=(x/a)⇒du=(dx/a)  A=a^2 ∫(√(u^2 −1))du  let u=cosh(t)⇒du=sinh(t)dt  sinh(t)du=sinh^2 tdt⇔(√(cosh^2 t−1))du=sinh^2 tdt  (√(u^2 −1))du=sinh^2 tdt  A=a^2 ∫sinh^2 tdt=a^2 ∫((cosh(2t)−1)/2)dt  A=(a^2 /2)(((sinh(2t))/2)−t)+C  A=(a^2 /4)(sinh(2acosh((x/a)))−acosh((x/a)))+C

$${A}=\int\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }{dx}={a}\int\sqrt{\left(\frac{{x}}{{a}}\right)^{\mathrm{2}} −\mathrm{1}}{dx} \\ $$$${let}\:{u}=\frac{{x}}{{a}}\Rightarrow{du}=\frac{{dx}}{{a}} \\ $$$${A}={a}^{\mathrm{2}} \int\sqrt{{u}^{\mathrm{2}} −\mathrm{1}}{du} \\ $$$${let}\:{u}={cosh}\left({t}\right)\Rightarrow{du}={sinh}\left({t}\right){dt} \\ $$$${sinh}\left({t}\right){du}={sinh}^{\mathrm{2}} {tdt}\Leftrightarrow\sqrt{{cosh}^{\mathrm{2}} {t}−\mathrm{1}}{du}={sinh}^{\mathrm{2}} {tdt} \\ $$$$\sqrt{{u}^{\mathrm{2}} −\mathrm{1}}{du}={sinh}^{\mathrm{2}} {tdt} \\ $$$${A}={a}^{\mathrm{2}} \int{sinh}^{\mathrm{2}} {tdt}={a}^{\mathrm{2}} \int\frac{{cosh}\left(\mathrm{2}{t}\right)−\mathrm{1}}{\mathrm{2}}{dt} \\ $$$${A}=\frac{{a}^{\mathrm{2}} }{\mathrm{2}}\left(\frac{{sinh}\left(\mathrm{2}{t}\right)}{\mathrm{2}}−{t}\right)+{C} \\ $$$${A}=\frac{{a}^{\mathrm{2}} }{\mathrm{4}}\left({sinh}\left(\mathrm{2}{acosh}\left(\frac{{x}}{{a}}\right)\right)−{acosh}\left(\frac{{x}}{{a}}\right)\right)+{C} \\ $$

Commented by Nayon last updated on 13/Apr/17

pls ans without using hyperbolic  trig...

$${pls}\:{ans}\:{without}\:{using}\:{hyperbolic} \\ $$$${trig}... \\ $$$$ \\ $$

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17

x=ait,dx=aidt,i=(√(−1))  I=∫(√(−a^2 t^2 −a^2 ))aidt=−a^2 ∫(√(t^2 +1))dt=  =−a^2 [t(√(t^2 +1))−∫t((2tdt)/(2(√(t^2 +1))))]=  =−a^2 [t(√(t^2 +1))−∫(((t^2 +1)−1)/(√(t^2 +1)))dt]=  =−a^2 [t(√(t^2 +1))−∫(√(t^2 +1))dt+∫(dt/(√(t^2 +1)))]=  −a^2 t(√(t^2 +1))+a^2 ∫(√(t^2 +1))dt−(a^2 /2)ln(t+(√(t^2 +1)))  2I=−a^2 (x/(ai)).((√(x^2 −a^2 ))/(ai))−(a^2 /2)ln((x/(ai))+((√(x^2 −a^2 ))/(ai)))⇒  I=(x/2)(√(x^2 −a^2 ))−(a^2 /4)ln(x+(√(x^2 −a^2 )))+C  .■  (−a^2 ×(1/(ai))×(1/(ai))=1,C=(a^2 /4)ln(ai))

$${x}={ait},{dx}={aidt},{i}=\sqrt{−\mathrm{1}} \\ $$$${I}=\int\sqrt{−{a}^{\mathrm{2}} {t}^{\mathrm{2}} −{a}^{\mathrm{2}} }{aidt}=−{a}^{\mathrm{2}} \int\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}{dt}= \\ $$$$=−{a}^{\mathrm{2}} \left[{t}\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}−\int{t}\frac{\mathrm{2}{tdt}}{\mathrm{2}\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}\right]= \\ $$$$=−{a}^{\mathrm{2}} \left[{t}\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}−\int\frac{\left({t}^{\mathrm{2}} +\mathrm{1}\right)−\mathrm{1}}{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}{dt}\right]= \\ $$$$=−{a}^{\mathrm{2}} \left[{t}\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}−\int\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}{dt}+\int\frac{{dt}}{\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}}\right]= \\ $$$$−{a}^{\mathrm{2}} {t}\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}+{a}^{\mathrm{2}} \int\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}{dt}−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{ln}\left({t}+\sqrt{{t}^{\mathrm{2}} +\mathrm{1}}\right) \\ $$$$\mathrm{2}{I}=−{a}^{\mathrm{2}} \frac{{x}}{{ai}}.\frac{\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{{ai}}−\frac{{a}^{\mathrm{2}} }{\mathrm{2}}{ln}\left(\frac{{x}}{{ai}}+\frac{\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }}{{ai}}\right)\Rightarrow \\ $$$${I}=\frac{{x}}{\mathrm{2}}\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }−\frac{{a}^{\mathrm{2}} }{\mathrm{4}}{ln}\left({x}+\sqrt{{x}^{\mathrm{2}} −{a}^{\mathrm{2}} }\right)+{C}\:\:.\blacksquare \\ $$$$\left(−{a}^{\mathrm{2}} ×\frac{\mathrm{1}}{{ai}}×\frac{\mathrm{1}}{{ai}}=\mathrm{1},{C}=\frac{{a}^{\mathrm{2}} }{\mathrm{4}}{ln}\left({ai}\right)\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com