Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 121012 by mathocean1 last updated on 04/Nov/20

x;y;z ∈ N^(∗ ) with x>3 are   numbers.  we suppose that y is equal  to 121 in base x and z is equal  to 110 in base x.  1) show that we can write  (without knowing x) the   product xyz in base x.  2) we suppose now that  x+y+z   is equal to 49 in base  10; determinate x and xyz  in base 10.

$$\mathrm{x};\mathrm{y};\mathrm{z}\:\in\:\mathbb{N}^{\ast\:} \mathrm{with}\:\mathrm{x}>\mathrm{3}\:\mathrm{are}\: \\ $$ $$\mathrm{numbers}. \\ $$ $$\mathrm{we}\:\mathrm{suppose}\:\mathrm{that}\:\mathrm{y}\:\mathrm{is}\:\mathrm{equal} \\ $$ $$\mathrm{to}\:\mathrm{121}\:\mathrm{in}\:\mathrm{base}\:\mathrm{x}\:\mathrm{and}\:\mathrm{z}\:\mathrm{is}\:\mathrm{equal} \\ $$ $$\mathrm{to}\:\mathrm{110}\:\mathrm{in}\:\mathrm{base}\:\mathrm{x}. \\ $$ $$\left.\mathrm{1}\right)\:\mathrm{show}\:\mathrm{that}\:\mathrm{we}\:\mathrm{can}\:\mathrm{write} \\ $$ $$\left(\mathrm{without}\:\mathrm{knowing}\:\mathrm{x}\right)\:\mathrm{the}\: \\ $$ $$\mathrm{product}\:\mathrm{xyz}\:\mathrm{in}\:\mathrm{base}\:\mathrm{x}. \\ $$ $$\left.\mathrm{2}\right)\:\mathrm{we}\:\mathrm{suppose}\:\mathrm{now}\:\mathrm{that} \\ $$ $$\mathrm{x}+\mathrm{y}+\mathrm{z}\:\:\:\mathrm{is}\:\mathrm{equal}\:\mathrm{to}\:\mathrm{49}\:\mathrm{in}\:\mathrm{base} \\ $$ $$\mathrm{10};\:\mathrm{determinate}\:\mathrm{x}\:\mathrm{and}\:\mathrm{xyz} \\ $$ $$\mathrm{in}\:\mathrm{base}\:\mathrm{10}. \\ $$

Commented bymathocean1 last updated on 19/Nov/20

thanks

$${thanks} \\ $$

Answered by JDamian last updated on 04/Nov/20

(1) n_((x) × x    is the same that apending a zero  as the rightmost digit (n_((x) 0). In fact,  z=11_((x) ×x. Then zxy is 11_((x) ×121_((x)  with 00  as the rightmost digits: 133100_((x)   (2) x+y+z. In any base x the value x is  10_((x)   10_((x) +110_((x) +121_((x) = 120_((x) + 121_((x) = 49  120_((x) + 120_((x) + 1 = 48+1  2∙120_((x) = 48 = 2 ∙ 24  120_((x) =24  x^2 +2x=24  x=((−2±(√(2^2 −4∙1∙(−24))))/2)= { ((x=4 ✓)),((x=−6 ×)) :}  x=4

$$\left(\mathrm{1}\right)\:{n}_{\left({x}\right.} ×\:{x}\:\:\:\:\mathrm{is}\:\mathrm{the}\:\mathrm{same}\:\mathrm{that}\:\mathrm{apending}\:\mathrm{a}\:\mathrm{zero} \\ $$ $$\mathrm{as}\:\mathrm{the}\:\mathrm{rightmost}\:\mathrm{digit}\:\left({n}_{\left({x}\right.} \mathrm{0}\right).\:\mathrm{In}\:\mathrm{fact}, \\ $$ $${z}=\mathrm{11}_{\left({x}\right.} ×{x}.\:\mathrm{Then}\:{zxy}\:\mathrm{is}\:\mathrm{11}_{\left({x}\right.} ×\mathrm{121}_{\left({x}\right.} \:\mathrm{with}\:\mathrm{00} \\ $$ $$\mathrm{as}\:\mathrm{the}\:\mathrm{rightmost}\:\mathrm{digits}:\:\mathrm{133100}_{\left({x}\right.} \\ $$ $$\left(\mathrm{2}\right)\:{x}+{y}+{z}.\:\mathrm{In}\:\mathrm{any}\:\mathrm{base}\:{x}\:\mathrm{the}\:\mathrm{value}\:{x}\:{is} \\ $$ $$\mathrm{10}_{\left({x}\right.} \\ $$ $$\mathrm{10}_{\left({x}\right.} +\mathrm{110}_{\left({x}\right.} +\mathrm{121}_{\left({x}\right.} =\:\mathrm{120}_{\left({x}\right.} +\:\mathrm{121}_{\left({x}\right.} =\:\mathrm{49} \\ $$ $$\mathrm{120}_{\left({x}\right.} +\:\mathrm{120}_{\left({x}\right.} +\:\mathrm{1}\:=\:\mathrm{48}+\mathrm{1} \\ $$ $$\mathrm{2}\centerdot\mathrm{120}_{\left({x}\right.} =\:\mathrm{48}\:=\:\mathrm{2}\:\centerdot\:\mathrm{24} \\ $$ $$\mathrm{120}_{\left({x}\right.} =\mathrm{24} \\ $$ $${x}^{\mathrm{2}} +\mathrm{2}{x}=\mathrm{24} \\ $$ $${x}=\frac{−\mathrm{2}\pm\sqrt{\mathrm{2}^{\mathrm{2}} −\mathrm{4}\centerdot\mathrm{1}\centerdot\left(−\mathrm{24}\right)}}{\mathrm{2}}=\begin{cases}{{x}=\mathrm{4}\:\checkmark}\\{{x}=−\mathrm{6}\:×}\end{cases} \\ $$ $${x}=\mathrm{4} \\ $$

Answered by Olaf last updated on 04/Nov/20

1)  y = 121_x  = x^2 +2x+1 = (x+1)^2   z = 110_x  = x^2 +x = x(x+1)    xyz = x×(x+1)^2 ×x(x+1)  xyz = x^2 (x+1)^3   xyz = x^2 (x^3 +3x^2 +3x+1)  xyz = x^5 +3x^4 +3x^3 +x^2 +0x+0  ⇒ xyz = 133100_x     2)  If x = 4_(10)  :  y = 121_x  = 25_(10)   z = 110_x  = 20_(10)   ⇒ x+y+z = 49_(10)   and xyz = x^2 (x+1)^3  = 16×5^3  = 2000_(10)     We can verify that :  133100_x  = 4^5 +3×4^4 +3×4^3 +4^2  = 2000_(10)

$$\left.\mathrm{1}\right) \\ $$ $${y}\:=\:\mathrm{121}_{{x}} \:=\:{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{1}\:=\:\left({x}+\mathrm{1}\right)^{\mathrm{2}} \\ $$ $${z}\:=\:\mathrm{110}_{{x}} \:=\:{x}^{\mathrm{2}} +{x}\:=\:{x}\left({x}+\mathrm{1}\right) \\ $$ $$ \\ $$ $${xyz}\:=\:{x}×\left({x}+\mathrm{1}\right)^{\mathrm{2}} ×{x}\left({x}+\mathrm{1}\right) \\ $$ $${xyz}\:=\:{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{3}} \\ $$ $${xyz}\:=\:{x}^{\mathrm{2}} \left({x}^{\mathrm{3}} +\mathrm{3}{x}^{\mathrm{2}} +\mathrm{3}{x}+\mathrm{1}\right) \\ $$ $${xyz}\:=\:{x}^{\mathrm{5}} +\mathrm{3}{x}^{\mathrm{4}} +\mathrm{3}{x}^{\mathrm{3}} +{x}^{\mathrm{2}} +\mathrm{0}{x}+\mathrm{0} \\ $$ $$\Rightarrow\:{xyz}\:=\:\mathrm{133100}_{{x}} \\ $$ $$ \\ $$ $$\left.\mathrm{2}\right) \\ $$ $$\mathrm{If}\:{x}\:=\:\mathrm{4}_{\mathrm{10}} \:: \\ $$ $${y}\:=\:\mathrm{121}_{{x}} \:=\:\mathrm{25}_{\mathrm{10}} \\ $$ $${z}\:=\:\mathrm{110}_{{x}} \:=\:\mathrm{20}_{\mathrm{10}} \\ $$ $$\Rightarrow\:{x}+{y}+{z}\:=\:\mathrm{49}_{\mathrm{10}} \\ $$ $$\mathrm{and}\:{xyz}\:=\:{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{3}} \:=\:\mathrm{16}×\mathrm{5}^{\mathrm{3}} \:=\:\mathrm{2000}_{\mathrm{10}} \\ $$ $$ \\ $$ $$\mathrm{We}\:\mathrm{can}\:\mathrm{verify}\:\mathrm{that}\:: \\ $$ $$\mathrm{133100}_{{x}} \:=\:\mathrm{4}^{\mathrm{5}} +\mathrm{3}×\mathrm{4}^{\mathrm{4}} +\mathrm{3}×\mathrm{4}^{\mathrm{3}} +\mathrm{4}^{\mathrm{2}} \:=\:\mathrm{2000}_{\mathrm{10}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com