Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 121014 by mathocean1 last updated on 04/Nov/20

show by recurrence that  ∀ n≥1 ,  a^n −b^n =(a−b)(a^(n−1) +a^(n−2) ∗b+...+ab^(n−2) +b^(n−1) )

showbyrecurrencethatn1,anbn=(ab)(an1+an2b+...+abn2+bn1)

Answered by mathmax by abdo last updated on 04/Nov/20

let prove by recurence that x^n −1 =(x−1)(x^(n−1) +x^(n−2) +...+x +1)  for x real n natural >0  n=1  we get x^1 −1 =(x−1)(1)  (relation true)  let suppose P_n  true  x^(n+1) −1 =x x^n −1 =x(x^n −1+1)−1  =x(x^n −1)+x−1 =x(x−1)(x^(n−1) +x^(n−2) +...+x+1)+x−1  =(x−1)(x^n  +x^(n−1) +...+x^2  +x+1) so  P_(n+1)  is true   for x =(a/b) and b≠0  we get  ((a/b))^n −1 =((a/b)−1)((a^(n−1) /b^(n−1) )+(a^(n−2) /b^(n−2) )+.....+(a/b)+1) ⇒  ((a^n −b^n )/b^n )=(((a−b)/b))((a^(n−1) /b^(n−1) )+(a^(n−2) /b^(n−2) )+....+(a/b)+1) ⇒  a^n −b^n  =(a−b)b^(n−1) ((a^(n−1) /b^(n−1) )+(a^(n−2) /b^(n−2) )+....+(a/b)+1) ⇒  a^n −b^n  =(a−b)(a^(n−1)  +a^(n−2) b+.....ab^(n−2)  +b^(n−1) )

letprovebyrecurencethatxn1=(x1)(xn1+xn2+...+x+1)forxrealnnatural>0n=1wegetx11=(x1)(1)(relationtrue)letsupposePntruexn+11=xxn1=x(xn1+1)1=x(xn1)+x1=x(x1)(xn1+xn2+...+x+1)+x1=(x1)(xn+xn1+...+x2+x+1)soPn+1istrueforx=abandb0weget(ab)n1=(ab1)(an1bn1+an2bn2+.....+ab+1)anbnbn=(abb)(an1bn1+an2bn2+....+ab+1)anbn=(ab)bn1(an1bn1+an2bn2+....+ab+1)anbn=(ab)(an1+an2b+.....abn2+bn1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com