All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 121014 by mathocean1 last updated on 04/Nov/20
showbyrecurrencethat∀n⩾1,an−bn=(a−b)(an−1+an−2∗b+...+abn−2+bn−1)
Answered by mathmax by abdo last updated on 04/Nov/20
letprovebyrecurencethatxn−1=(x−1)(xn−1+xn−2+...+x+1)forxrealnnatural>0n=1wegetx1−1=(x−1)(1)(relationtrue)letsupposePntruexn+1−1=xxn−1=x(xn−1+1)−1=x(xn−1)+x−1=x(x−1)(xn−1+xn−2+...+x+1)+x−1=(x−1)(xn+xn−1+...+x2+x+1)soPn+1istrueforx=abandb≠0weget(ab)n−1=(ab−1)(an−1bn−1+an−2bn−2+.....+ab+1)⇒an−bnbn=(a−bb)(an−1bn−1+an−2bn−2+....+ab+1)⇒an−bn=(a−b)bn−1(an−1bn−1+an−2bn−2+....+ab+1)⇒an−bn=(a−b)(an−1+an−2b+.....abn−2+bn−1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com