Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 121042 by bramlexs22 last updated on 05/Nov/20

prove that lim_(x→∞) (1+(1/x))^x = e

$$\mathrm{prove}\:\mathrm{that}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{x}}\right)^{\mathrm{x}} =\:\mathrm{e}\: \\ $$

Answered by bobhans last updated on 05/Nov/20

Let w = lim_(x→∞) (1+(1/x))^x   then ln (w)= ln (lim_(x→∞) (1+(1/x))^x )   ln (w)=lim_(x→∞) (ln (1+(1/x))^x )   ln (w)= lim_(x→∞)  (x.ln (1+(1/x)))   ln (w)= lim_(x→∞) (x.[(1/x)−(1/(2x^2 ))+(1/(3x^3 ))−(1/(4x^4 ))+... ])   ln (w)= lim_(x→∞) (1−(1/(2x))+(1/(3x^2 ))−(1/(4x^3 ))+...)   ln (w) = 1 ⇒w = e^1  = e.

$${Let}\:{w}\:=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \\ $$$${then}\:\mathrm{ln}\:\left({w}\right)=\:\mathrm{ln}\:\left(\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \right) \\ $$$$\:\mathrm{ln}\:\left({w}\right)=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \right) \\ $$$$\:\mathrm{ln}\:\left({w}\right)=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left({x}.\mathrm{ln}\:\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)\right) \\ $$$$\:\mathrm{ln}\:\left({w}\right)=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left({x}.\left[\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{3}{x}^{\mathrm{3}} }−\frac{\mathrm{1}}{\mathrm{4}{x}^{\mathrm{4}} }+...\:\right]\right) \\ $$$$\:\mathrm{ln}\:\left({w}\right)=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}{x}}+\frac{\mathrm{1}}{\mathrm{3}{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{4}{x}^{\mathrm{3}} }+...\right) \\ $$$$\:\mathrm{ln}\:\left({w}\right)\:=\:\mathrm{1}\:\Rightarrow{w}\:=\:{e}^{\mathrm{1}} \:=\:{e}. \\ $$

Answered by Dwaipayan Shikari last updated on 05/Nov/20

lim_(x→∞) (1+(1/x))^x   =1+(x/x)+((x(x−1))/(2!x^2 ))+((x(x−1)(x−2))/(3!x^3 ))+...  =1+(1/(1!))+(1/(2!))+(1/(3!))+...  =Σ_(n=0) ^∞ (1/(n!))=e

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{{x}} \\ $$$$=\mathrm{1}+\frac{{x}}{{x}}+\frac{{x}\left({x}−\mathrm{1}\right)}{\mathrm{2}!{x}^{\mathrm{2}} }+\frac{{x}\left({x}−\mathrm{1}\right)\left({x}−\mathrm{2}\right)}{\mathrm{3}!{x}^{\mathrm{3}} }+... \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}+... \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}={e} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com