All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 121117 by benjo_mathlover last updated on 05/Nov/20
J=∫302x2+x−1x+1dx?
Answered by liberty last updated on 05/Nov/20
⇒2x2+x−1=(2x−1)(x+1)letx+1=ρ⇒x=ρ2−1J=∫21(2ρ2−3)ρ2(2ρdρ)ρJ=∫12(4ρ4−6ρ2)dρ=45(32−1)−2(8−1)=1245−14=124−705=545
Answered by Bird last updated on 05/Nov/20
J=∫032x2+x−1x+1dxwedothechangementx+1=t⇒x+1=t2⇒x=t2−1⇒J=∫122(t2−1)2+t2−1−1t(2t)dt=2∫12(2(t4−2t2+1)+t2−2)dt=2∫12(2t4−3t2)dt=4∫12t4dt+6∫12t2dt=45[t5]12+2[t3]12=45{25−1}+2{23−1}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com