Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121117 by benjo_mathlover last updated on 05/Nov/20

 J=∫_0 ^3  ((2x^2 +x−1)/( (√(x+1)))) dx ?

J=302x2+x1x+1dx?

Answered by liberty last updated on 05/Nov/20

⇒2x^2 +x−1=(2x−1)(x+1)   let (√(x+1)) = ρ ⇒x=ρ^2 −1  J=∫_1 ^2  (((2ρ^2 −3)ρ^2  (2ρ dρ))/ρ)  J=∫_1 ^2 (4ρ^4 −6ρ^2 ) dρ =(4/5)(32−1)−2(8−1)  = ((124)/5)−14=((124−70)/5)=((54)/5)

2x2+x1=(2x1)(x+1)letx+1=ρx=ρ21J=21(2ρ23)ρ2(2ρdρ)ρJ=12(4ρ46ρ2)dρ=45(321)2(81)=124514=124705=545

Answered by Bird last updated on 05/Nov/20

J =∫_0 ^3  ((2x^2 +x−1)/( (√(x+1))))dx we do the changement  (√(x+1))=t ⇒x+1=t^(2 )  ⇒x=t^2 −1 ⇒  J =∫_1 ^2  ((2(t^2 −1)^2 +t^2 −1−1)/t)(2t)dt  =2 ∫_1 ^2  (2(t^4 −2t^2 +1)+t^2 −2)dt  =2 ∫_1 ^2  (2t^4 −3t^2 )dt  =4 ∫_1 ^2  t^4 dt +6 ∫_1 ^2 t^2 dt  =(4/5)[t^5 ]_1 ^2  +2[t^3 ]_1 ^2   =(4/5){2^5 −1} +2{2^3 −1}

J=032x2+x1x+1dxwedothechangementx+1=tx+1=t2x=t21J=122(t21)2+t211t(2t)dt=212(2(t42t2+1)+t22)dt=212(2t43t2)dt=412t4dt+612t2dt=45[t5]12+2[t3]12=45{251}+2{231}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com