Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121119 by benjo_mathlover last updated on 05/Nov/20

M= ∫ _(−15) ^(−8) ( (dx/(x(√(1−x))))) ?

M=815(dxx1x)?

Answered by liberty last updated on 05/Nov/20

M =∫_(−15) ^(−8)  (dx/(x^2 (√(x^(−1) −1))))  let u = x^(−1) −1 ⇒du=−x^(−2)  dx → { ((u=−(9/8))),((u=−((16)/(15)))) :}  M=−∫_(−16/15) ^(−9/8) (du/u^(1/2) ) = −2(√u) ]_(−16/15) ^(−9/8)   = −((3i)/( (√2))) −(−((8i)/( (√(15)))))=((8/( (√(15))))−(3/( (√2))))i

M=815dxx2x11letu=x11du=x2dx{u=98u=1615M=9/816/15duu1/2=2u]16/159/8=3i2(8i15)=(81532)i

Answered by 675480065 last updated on 05/Nov/20

u^2 =1−x ⇒ du=−dx {x=1−u^2 }  U=∫_u_1  ^( u_2 ) (du/((u^2 −1)u)) =∫_u_1  ^( u_2 ) (du/((u−1)(u+1)u))  M=(1/2)ln∣(√(1−x))+1∣+(1/2)ln∣(√(1−x))−1∣−ln∣(√(1−x))∣]_(−15) ^(−8)   M=[ln∣(x^2 /( (√(1−x))))∣]_(−15) ^(−8) =ln(((64)/3)×(4/(225)))

u2=1xdu=dx{x=1u2}U=u1u2du(u21)u=u1u2du(u1)(u+1)uM=12ln1x+1+12ln1x1ln1x]158M=[lnx21x]158=ln(643×4225)

Answered by MJS_new last updated on 05/Nov/20

∫(dx/(x(√(1−x))))=       [t=((1+(√(1−x)))/( (√x))) → dx=−2(x−1+(√(1−x)))(√x)dt]  =−2∫(dt/t)=−2ln ∣t∣ ⇒ M=ln (5/6)

dxx1x=[t=1+1xxdx=2(x1+1x)xdt]=2dtt=2lntM=ln56

Answered by Bird last updated on 05/Nov/20

M=∫_(−15) ^(−8)  (dx/(x(√(1−x)))) changement  (√(1−x))=t give 1−x=t^2  ⇒x=1−t^2   ⇒M =∫_4 ^3   ((−2tdt)/((1−t^2 )t)) =2∫_3 ^4  (dt/(1−t^2 ))  =∫_3 ^4 ((1/(1−t))+(1/(1+t)))dt  =[ln∣((1+t)/(1−t))∣]_3 ^4  =ln((5/3))−ln((4/2))  =ln5 −ln3−ln2 =ln5−ln6

M=158dxx1xchangement1x=tgive1x=t2x=1t2M=432tdt(1t2)t=234dt1t2=34(11t+11+t)dt=[ln1+t1t]34=ln(53)ln(42)=ln5ln3ln2=ln5ln6

Terms of Service

Privacy Policy

Contact: info@tinkutara.com