Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 121154 by zakirullah last updated on 05/Nov/20

Answered by Bird last updated on 05/Nov/20

let f(n)=u_n  ⇒u_n =6u_(m−1) −9u_(n−2)   u_0 =1  and u_2 =2  e⇒u_(n+2) =6u_(n+1) −9u_n  ⇒  u_(n+2) −6u_(n+1) +9u_n =0  +(eq)→r^2 −6r+9=0 ⇒  (r−3)^2 =0 ⇒r=3(double) ⇒  u_n =(an +b)3^n   u_0 =1 =b  u_2 =(2a+b)3^2  =2 ⇒  2a+b=(2/9) ⇒2a =(2/9)−1 =((−7)/9) ⇒  a=−(7/(18)) ⇒f(n)=(−(7/(18))n+1)3^n

letf(n)=unun=6um19un2u0=1andu2=2eun+2=6un+19unun+26un+1+9un=0+(eq)r26r+9=0(r3)2=0r=3(double)un=(an+b)3nu0=1=bu2=(2a+b)32=22a+b=292a=291=79a=718f(n)=(718n+1)3n

Commented by zakirullah last updated on 05/Nov/20

thsnks sir! please solve all?

thsnkssir!pleasesolveall?

Answered by TANMAY PANACEA last updated on 05/Nov/20

2)f(n)=f(n−1)+(n−1)  f(2)=1=f(0)+1  f(0)=0   f(2)=1  f(n)=((n(n−1))/2)

2)f(n)=f(n1)+(n1)f(2)=1=f(0)+1f(0)=0f(2)=1f(n)=n(n1)2

Commented by zakirullah last updated on 05/Nov/20

thanks sir G

thankssirG

Commented by TANMAY PANACEA last updated on 06/Nov/20

most welcome

mostwelcome

Answered by Bird last updated on 05/Nov/20

f(n)=f(n−1)+n−1 ⇒  u_n =u_(n−1) +n−1 ⇒u_(n+1) =u_n +n ⇒  u_(n+1) −u_n =n ⇒Σ_(k=1) ^(n−1) (u_(k+1) −u_k )  =Σ_(k=1) ^(n−1)  k =(((n−1)n)/2) ⇒  u_2 −u_1 +u_3 −u_2 +....+u_n −u_(n−1)   =((n(n−1))/2) ⇒u_n −u_1 =((n(n−1))/2)  u_n =((n(n−1))/2) +u_1   u_2 =1+u_1 =1 ⇒u_1 =0 ⇒u_n =((n(n−1))/2)

f(n)=f(n1)+n1un=un1+n1un+1=un+nun+1un=nk=1n1(uk+1uk)=k=1n1k=(n1)n2u2u1+u3u2+....+unun1=n(n1)2unu1=n(n1)2un=n(n1)2+u1u2=1+u1=1u1=0un=n(n1)2

Answered by Bird last updated on 05/Nov/20

f(n) =3f(n−1) ⇒u_n =3u_(n−1)  ⇒  (u_n /u_(n−1) )=3 ⇒Π_(k=1) ^n  (u_k /u_(k−1) )=3^n  ⇒  (u_1 /u_0 ).(u_2 /u_1 )......(u_n /u_(n−1) )=3^n  ⇒u_n =3^n  u_0   ⇒u_n =2×3^n

f(n)=3f(n1)un=3un1unun1=3k=1nukuk1=3nu1u0.u2u1......unun1=3nun=3nu0un=2×3n

Commented by zakirullah last updated on 05/Nov/20

thanks so much

thankssomuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com