All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 121203 by benjo_mathlover last updated on 05/Nov/20
∫cos5(x)sin(x)dx
Answered by MJS_new last updated on 06/Nov/20
∫cos5xsinxdx=[t=sinx→dx=2sinxcosxdt]=2∫(t4−1)2dt==29t9−45t5+2t==2(19sin4x−25sin2x+1)sinx+C
Answered by bobhans last updated on 06/Nov/20
∫cos4(x)cos(x)sin(x)dx=∫(1−sin2(x))2d(sinx)sin(x)letsinx=u⇒sinx=u2∧d(sinx)=2udu∫(1−u4)2(2udu)u=2∫(u8−2u4+1)du=2(u99−2u55+u)+c=2(sin9(x)9−2sin5(x)5+sin(x))+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com