Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121203 by benjo_mathlover last updated on 05/Nov/20

 ∫ ((cos^5 (x))/( (√(sin (x))))) dx

cos5(x)sin(x)dx

Answered by MJS_new last updated on 06/Nov/20

∫((cos^5  x)/( (√(sin x))))dx=       [t=(√(sin x)) → dx=((2(√(sin x)))/(cos x))dt]  =2∫(t^4 −1)^2 dt=  =(2/9)t^9 −(4/5)t^5 +2t=  =2((1/9)sin^4  x −(2/5)sin^2  x +1)(√(sin x)) +C

cos5xsinxdx=[t=sinxdx=2sinxcosxdt]=2(t41)2dt==29t945t5+2t==2(19sin4x25sin2x+1)sinx+C

Answered by bobhans last updated on 06/Nov/20

∫((cos^4 (x)cos (x))/( (√(sin (x))))) dx = ∫ (((1−sin^2 (x))^2  d(sin x))/( (√(sin (x)))))  let (√(sin x)) = u ⇒sin x=u^2  ∧d(sin x)=2u du  ∫(((1−u^4 )^2 (2u du))/u) = 2∫(u^8 −2u^4 +1)du  =2((u^9 /9)−((2u^5 )/5)+u)+c  =2(((√(sin^9 (x)))/9) −((2(√(sin^5 (x))))/5) +(√(sin (x))) )+c

cos4(x)cos(x)sin(x)dx=(1sin2(x))2d(sinx)sin(x)letsinx=usinx=u2d(sinx)=2udu(1u4)2(2udu)u=2(u82u4+1)du=2(u992u55+u)+c=2(sin9(x)92sin5(x)5+sin(x))+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com