Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 121235 by ZiYangLee last updated on 06/Nov/20

Find the sum of n terms of the series  S_n =1+22+333+4444+……

FindthesumofntermsoftheseriesSn=1+22+333+4444+

Answered by Ar Brandon last updated on 06/Nov/20

S_n =1+22+333+4444+∙∙∙       =1(10^0 )+2(10^1 +10^0 )+3(10^2 +10^1 +10^0 )          +4(10^3 +10^2 +10^1 +10^0 )       =10^0 (1+2+3+∙∙∙+n)+10^1 (2+3+4+∙∙∙+n)          +10^2 (3+4+5+∙∙∙+n)+∙∙∙+10^(n−1) (n)       =((n(n+1))/2)+((10(n−1)(2+n))/2)+((10^2 (n−2)(3+n))/2)+∙∙∙+((10^(n−1) (n))/1)    To be continued...

Sn=1+22+333+4444+=1(100)+2(101+100)+3(102+101+100)+4(103+102+101+100)=100(1+2+3++n)+101(2+3+4++n)+102(3+4+5++n)++10n1(n)=n(n+1)2+10(n1)(2+n)2+102(n2)(3+n)2++10n1(n)1Tobecontinued...

Answered by Dwaipayan Shikari last updated on 06/Nov/20

First term =((10^n n)/9)−(n/9)        n=1  second term=((10^2 .2)/9)−(2/9)  third term=((10^3 .3)/9)−(3/9)  T_n =((10^n .n)/9)−(n/9)  Σ_(n=1) ^n T_n =Σ_(n=1) ^n ((10^n .n)/9)−Σ_(n=1) ^n (n/9)        S=Σ^n n.10^n            S=10+2.10^2 +...+n10^n   −10S=       −10^2 −....−(n−1)10^n −n10^(n+1)   −9S=10+10^2 +...+10^n −n10^(n+1)   S=(n/9)10^(n+1) −(1/(81))(10^(n+1) −10)  Σ^n T_n =(1/9)((n/9)10^(n+1) −(1/(81))10^(n+1) +((10)/(81)))−Σ^n (n/9)           =(1/9)((n/9)10^(n+1) −(1/(81))10^(n+1) +((10)/(81)))−((n(n+1))/(18))

Firstterm=10nn9n9n=1secondterm=102.2929thirdterm=103.3939Tn=10n.n9n9nn=1Tn=nn=110n.n9nn=1n9S=nn.10nS=10+2.102+...+n10n10S=102....(n1)10nn10n+19S=10+102+...+10nn10n+1S=n910n+1181(10n+110)nTn=19(n910n+118110n+1+1081)nn9=19(n910n+118110n+1+1081)n(n+1)18

Commented by Dwaipayan Shikari last updated on 06/Nov/20

Checking  n=1  (1/9)(((100)/9)−((100)/(81))+((10)/(81)))−(2/(18))=((10)/9)−(1/9)=1  (true)

Checkingn=119(100910081+1081)218=10919=1(true)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com