Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 122236 by benjo_mathlover last updated on 15/Nov/20

  lim_(x→0)  (((1+mx)^n −(1+nx)^m )/x^2 ) ?

limx0(1+mx)n(1+nx)mx2?

Answered by Dwaipayan Shikari last updated on 15/Nov/20

lim_(x→0) ((1+mnx+((n(n−1))/2)m^2 x^2 −1−mnx−((m(m−1))/2)n^2 x^2 )/x^2 )  =((n(n−1)m^2 −m(m−1)n^2 )/2)

limx01+mnx+n(n1)2m2x21mnxm(m1)2n2x2x2=n(n1)m2m(m1)n22

Answered by liberty last updated on 15/Nov/20

 lim_(x→0) ((mn(1+mx)^(n−1) −mn(1+nx)^(m−1) )/(2x)) =    ((mn)/2) lim_(x→0)  (((1+mx)^(n−1) −(1+nx)^(m−1) )/x) =  ((mn)/2) lim_(x→0)  ((m(n−1)(1+mx)^(n−2) −n(m−1)(1+nx)^(m−2) )/1) =   ((mn)/2) . [ mn−m−mn+n ] = ((mn(n−m))/2).▲

limx0mn(1+mx)n1mn(1+nx)m12x=mn2limx0(1+mx)n1(1+nx)m1x=mn2limx0m(n1)(1+mx)n2n(m1)(1+nx)m21=mn2.[mnmmn+n]=mn(nm)2.

Answered by mathmax by abdo last updated on 15/Nov/20

let f(x) =(((1+mx)^n −(1+nx)^m )/x^2 )   we have  (1+u)^α  =1+αu +((α(α−1))/2)u^2  +o(u^3 ) ⇒  (1+mx)^n   ∼1+nmx +((n(n−1))/2)m^2 x^2   (1+nx)^m  ?∼1+nmx +((m)m−1))/2)n^2 x^2  ⇒  f(x)∼((1+nmx+((n(n−1))/2)m^2 x^2 −1−mn x−((m(m−1))/2)n^2 x^2 )/x^2 )  ⇒f(x)∼((m^2 n(n−1))/2)−((n^2 m(m−1))/2) ⇒  f(x)∼ ((mn(mn−m)−mn(nm−n))/2)=((mn)/2)(n−m) ⇒  lim_(x→0) f(x) =((mn(n−m))/2)

letf(x)=(1+mx)n(1+nx)mx2wehave(1+u)α=1+αu+α(α1)2u2+o(u3)(1+mx)n1+nmx+n(n1)2m2x2(1+nx)m?1+nmx+m)m1)2n2x2f(x)1+nmx+n(n1)2m2x21mnxm(m1)2n2x2x2f(x)m2n(n1)2n2m(m1)2f(x)mn(mnm)mn(nmn)2=mn2(nm)limx0f(x)=mn(nm)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com