Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 121246 by benjo_mathlover last updated on 06/Nov/20

  Σ_(k=1) ^(49)  (1/( (√(k+(√(k^2 −1)))))) ?

49k=11k+k21?

Answered by liberty last updated on 06/Nov/20

 (1/( (√(k+(√(k^2 −1)))))) = (1/( (√(((√((k+1)/2))+(√((k−1)/2)))^2 ))))   =(1/( (√((k+1)/2))−(√((k−1)/2)))) = (((√((k+1)/2)) −(√((k−1)/2)))/(((k+1)/2)−((k−1)/2)))  = (√((k+1)/2))−(√((k−1)/2))  so Σ_(k=1) ^(49) ((√((k+1)/2))−(√((k−1)/2)) )= (√((49+1)/2))+(√((48+1)/2))−(√(1/2))−0   = 5+((7(√2))/2)−((√2)/2) = 5+3(√2)

1k+k21=1(k+12+k12)2=1k+12k12=k+12k12k+12k12=k+12k12so49k=1(k+12k12)=49+12+48+12120=5+72222=5+32

Answered by Dwaipayan Shikari last updated on 06/Nov/20

Σ_(k=1) ^(49) (1/( (√(k+(√(k^2 −1))))))  Σ_(k=1) ^(49) (√(k−(√(k^2 −1))))  (√(k−(√(k^2 −1))))=(√((k+(√(k^2 −(k^2 −1))))/2))−(√((k−(√(k^2 −(k^2 −1))))/2))  Σ_(k=1) ^(49) (√(k−(√(k^2 −1))))=Σ^(49) (√((k+1)/2))−(√((k−1)/2))  =(√(2/2))−(√(0/2))+(√(3/2))−(√(1/2))+(√((4/2) ))−(√(2/2))+...(√((50)/2))−(√((48)/2))  =−(√(1/2))+(√((50)/2))+(√((49)/2))  =((7−1)/( (√2)))+5=5+3(√2)

49k=11k+k2149k=1kk21kk21=k+k2(k21)2kk2(k21)249k=1kk21=49k+12k12=2202+3212+4222+...502482=12+502+492=712+5=5+32

Terms of Service

Privacy Policy

Contact: info@tinkutara.com