Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 121256 by ZiYangLee last updated on 06/Nov/20

Prove 2sin^2 3θ−2sin^2 θ=cos2θ−cos6θ.  By substitusing θ=(π/(10)) in the above identity,  prove that sin((3π)/(10))−sin(π/(10))=(1/2)

Prove2sin23θ2sin2θ=cos2θcos6θ.Bysubstitusingθ=π10intheaboveidentity,provethatsin3π10sinπ10=12

Answered by TANMAY PANACEA last updated on 06/Nov/20

2sin^2 3θ−2sin^2 θ  1−cos6θ−1+cos2θ  cos2θ−cos6θ  so sin3θ−sinθ=((cos2θ−cos6θ)/(2(sin3θ+sinθ)))  sin((3π)/(10))−sin(π/(10))  ((cos((2π)/(10))−cos((6π)/(10)))/(2(sin((3π)/(10))+sin(π/(10)))))  (1/2)×((2sin(((4π)/(10)))sin(((2π)/(20))))/(2sin(((2π)/(10)))cos((π/(10)))))=(1/2) proved  note  sin((4π)/(10))=cos((π/2)−((4π)/(10)))=cos((π/(10)))

2sin23θ2sin2θ1cos6θ1+cos2θcos2θcos6θsosin3θsinθ=cos2θcos6θ2(sin3θ+sinθ)sin3π10sinπ10cos2π10cos6π102(sin3π10+sinπ10)12×2sin(4π10)sin(2π20)2sin(2π10)cos(π10)=12provednotesin4π10=cos(π24π10)=cos(π10)

Commented by ZiYangLee last updated on 08/Nov/20

thank you sir

thankyousir

Commented by TANMAY PANACEA last updated on 08/Nov/20

most welcome

mostwelcome

Answered by Dwaipayan Shikari last updated on 06/Nov/20

sin((3π)/(10))−sin(𝛑/(10))  =(((√5)+1)/4)−(((√5)−1)/4)=(1/2)

sin3π10sinπ10=5+14514=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com