All Questions Topic List
Differentiation Questions
Previous in All Question Next in All Question
Previous in Differentiation Next in Differentiation
Question Number 121282 by mnjuly1970 last updated on 06/Nov/20
...advancedmathematics...provethat::Ψ=∫01Γ(2−x)Γ(1+x)dx=7π2ζ(3)...m.n.july.1970...
Answered by mindispower last updated on 06/Nov/20
Ψ=∫01(1−x)(−x)Γ(−x)Γ(1+x)dxΓ(−x)Γ(1+x)=πsin(−πx)=−πsin(πx)Ψ=π∫01x(x−1)sin(πx)dx,WeuseintegrationBypart⇒Ψ=12[ln(1−cos(πx)1+cos(πx))x(x−1)]01−12∫(2x−1)ln(1−cos(πx)1+cos(πx))dxΨ=−12∫01(2x−1)ln(2sin2(πx2)2cos2(πx2))dx=−∫01(2x−1)ln(tg(πx2))dxletz=πx2⇒dx=2πdz=−2π∫0π2(4zπ−1)ln(tg(z)).dz=−8π2∫0π2zln(tg(z))dz∀x∈[0,π2[wehaveln(tg(x))=−2Σcos(2(2n−1)x)2n−1Ψ=−8π2∑n⩾1−2(2n−1)∫xcos(2(2n−1)x)dxIBP−8π2.2∑n⩾1∫0π212(2n−1)2sin(2(2n−1))=−16π2∑n⩾1[cos((2n−1)π)−14(2n−1)3]=.−16π2.∑n⩾1−12(2n−1)3=−16π2.−12(78ζ(3))=7π2ζ(3)
Commented by mnjuly1970 last updated on 06/Nov/20
bravosirmindspowergoodforyou...
Terms of Service
Privacy Policy
Contact: info@tinkutara.com