Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121315 by Bird last updated on 06/Nov/20

find lim ∫_(1/n) ^n arctan(1+(x/n))e^(−nx) dx

findlim1nnarctan(1+xn)enxdx

Answered by Lordose last updated on 06/Nov/20

u = (1+(x/n)) ⇒ du = (dx/n)  x = n(u−1)  ∫_((n^2 +1)/n^2 ) ^( 2) tan^(−1) (u)e^(−n^2 (u−1)) du  ∫_((n^2 +1)/n^2 ) ^( 2) Σ_(n=0) ^∞ (((−1)^n u^(2n+1) )/((2n+1))) e^(−n^2 (u−1)) du  e^n^2  Σ_(n=0) ^∞ (((−1)^n )/((2n+1)))∫_((n^2 +1)/n^2 ) ^( 2) u^(2n+1) e^(−n^2 u) du  Wait

u=(1+xn)du=dxnx=n(u1)n2+1n22tan1(u)en2(u1)dun2+1n22n=0(1)nu2n+1(2n+1)en2(u1)duen2n=0(1)n(2n+1)n2+1n22u2n+1en2uduWait

Answered by mathmax by abdo last updated on 06/Nov/20

A_n =∫_(1/n) ^n  arctan(1+(x/n))e^(−nx)  dx  changement (x/n)=t give  A_n =∫_(1/n^2 ) ^1  arctan(1+t)e^(−n^2 t)    ndt =n  ∫_(1/n^2 ) ^1  arctan(1+t)e^(−n^2 t)  dt  ⇒(A_n /n) =_(by parts)      [−(1/n^2 )e^(−n^2 t)  arctan(1+t)]_(1/n^2 ) ^1 +(1/n^2 )∫_(1/n^2 ) ^1   (e^(−n^2 t) /(1+(1+t)^2 ))dt  =(1/n^2 )e^(−1)  arctan(1+(1/n^2 ))−(1/n^2 )e^(−n^2 ) arctan(2)+(1/n^2 )∫_(1/n^2 ) ^1  (e^(−n^2 t) /(1+(1+t)^2 ))dt ⇒  A_n =(1/n)e^(−1)  arctan(1+(1/n^2 ))−(1/n)e^(−n^2 )  arctan(2)+(1/n)∫_(1/n^2 ) ^1  (e^(−n^2 t) /(1+(1+t)^2 ))dt  we have lim_(n→+∞) (1/n){e^(−1)  arctan(1+(1/n^2 ))−e^(−n^2  arctan2) }=0  ∫_(1/n^2 ) ^1   (e^(−n^2 t) /(1+(1+t)^2 ))dt =∫_R  f_n (x)dx with f_n (x)=(e^(−n^2 t) /(1+(1+t)^2 )) χ_(](1/n^2 ),1]) (t)dt  f_n →^(cs)   0 ⇒(1/n)∫_R f_n (x)dx→0 ⇒lim_(n→+∞)  A_n =0

An=1nnarctan(1+xn)enxdxchangementxn=tgiveAn=1n21arctan(1+t)en2tndt=n1n21arctan(1+t)en2tdtAnn=byparts[1n2en2tarctan(1+t)]1n21+1n21n21en2t1+(1+t)2dt=1n2e1arctan(1+1n2)1n2en2arctan(2)+1n21n21en2t1+(1+t)2dtAn=1ne1arctan(1+1n2)1nen2arctan(2)+1n1n21en2t1+(1+t)2dtwehavelimn+1n{e1arctan(1+1n2)en2arctan2}=01n21en2t1+(1+t)2dt=Rfn(x)dxwithfn(x)=en2t1+(1+t)2χ]1n2,1](t)dtfncs01nRfn(x)dx0limn+An=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com