All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 121315 by Bird last updated on 06/Nov/20
findlim∫1nnarctan(1+xn)e−nxdx
Answered by Lordose last updated on 06/Nov/20
u=(1+xn)⇒du=dxnx=n(u−1)∫n2+1n22tan−1(u)e−n2(u−1)du∫n2+1n22∑∞n=0(−1)nu2n+1(2n+1)e−n2(u−1)duen2∑∞n=0(−1)n(2n+1)∫n2+1n22u2n+1e−n2uduWait
Answered by mathmax by abdo last updated on 06/Nov/20
An=∫1nnarctan(1+xn)e−nxdxchangementxn=tgiveAn=∫1n21arctan(1+t)e−n2tndt=n∫1n21arctan(1+t)e−n2tdt⇒Ann=byparts[−1n2e−n2tarctan(1+t)]1n21+1n2∫1n21e−n2t1+(1+t)2dt=1n2e−1arctan(1+1n2)−1n2e−n2arctan(2)+1n2∫1n21e−n2t1+(1+t)2dt⇒An=1ne−1arctan(1+1n2)−1ne−n2arctan(2)+1n∫1n21e−n2t1+(1+t)2dtwehavelimn→+∞1n{e−1arctan(1+1n2)−e−n2arctan2}=0∫1n21e−n2t1+(1+t)2dt=∫Rfn(x)dxwithfn(x)=e−n2t1+(1+t)2χ]1n2,1](t)dtfn→cs0⇒1n∫Rfn(x)dx→0⇒limn→+∞An=0
Terms of Service
Privacy Policy
Contact: info@tinkutara.com