Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 121326 by Dwaipayan Shikari last updated on 06/Nov/20

((Σ_(n=1) ^∞ (1/(n^2 +1)))/(Σ_(n=2) ^∞ (1/(n^2 −1))))

n=11n2+1n=21n21

Commented by Dwaipayan Shikari last updated on 06/Nov/20

Σ_(n=2) ^∞ (1/(n^2 −1))=(1/2)(Σ_(n=2) ^∞ (1/(n−1))−Σ_(n=2) ^∞ (1/(n+1)))=(1/2)(1+(1/2)+(1/3)+...−(1/3)−(1/4)−...)  =(3/4)  Σ_(n=1) ^∞ (1/(n^2 +1))=(1/(2i))Σ_(n=1) ^∞ (1/(n−i))−(1/(n+i))  =(1/(2i))Σ_(n=2) ^∞ ((1/n)−(1/(n−i−1)))−(1/(2i))Σ_(n=2) ^∞ ((1/n)−(1/(n+i−1)))  =(1/(2i))(ψ(i)−ψ(1−i))  =(1/(2i))(−πcot(iπ))+i) = (1/(2i))(−πcot(iπ)+1))=(π/2)cothπ+(1/2)  [Γ(s)Γ(1−s)=(π/(sinπs))]  [log(Γ(s)+log(Γ(1−s))=logπ−log(sinπs)]  [((Γ′(s))/(Γ(s)))−((Γ′(1−s))/(Γ(1−s)))=−((πcossπs)/(sinπs))]  [𝛙(1−s)−𝛙(s)=πcotπs]

n=21n21=12(n=21n1n=21n+1)=12(1+12+13+...1314...)=34n=11n2+1=12in=11ni1n+i=12in=2(1n1ni1)12in=2(1n1n+i1)=12i(ψ(i)ψ(1i))=12i(πcot(iπ))+i)=12i(πcot(iπ)+1))=π2cothπ+12[Γ(s)Γ(1s)=πsinπs][log(Γ(s)+log(Γ(1s))=logπlog(sinπs)][Γ(s)Γ(s)Γ(1s)Γ(1s)=πcossπssinπs][ψ(1s)ψ(s)=πcotπs]

Commented by Dwaipayan Shikari last updated on 06/Nov/20

Is it right?

Isitright?

Commented by mathmax by abdo last updated on 06/Nov/20

perhaps your answer is correct..!

perhapsyouransweriscorrect..!

Answered by mathmax by abdo last updated on 06/Nov/20

let f(x) =e^(−∣x∣)  function 2π periodic even we have  f(x) =(a_0 /2) +Σ_(n=1) ^∞  a_n cos(nx)  with a_n =(2/T)∫_T f(x)cos(nx)dx  =(2/(2π))∫_(−π) ^π  e^(−∣x∣)  cos(nx)dx =(2/π)∫_0 ^π  e^(−x)  cos(nx)dx  ⇒(π/2) a_n = Re(∫_0 ^π  e^(−x+inx) dx) and ∫_0 ^π  e^((−1+in)x) dx  =[(1/(−1+in)) e^((−1+in)x) ]_0 ^π  =((−1)/(1−in)){ e^((−1+in)π) −1}  =−((1+in)/(1+n^2 )){(−1)^n  e^(−π) −1} =((1−(−1)^n e^(−π) )/(1+n^2 )) +i(...) ⇒  a_n =(2/π)×((1−(−1)^n  e^(−π) )/(1+n^2 )) ⇒  a_0 =(2/π)(1−e^(−π) ) ⇒(a_0 /2)=((1−e^(−π) )/π) ⇒  e^(−∣x∣)  =((1−e^(−π) )/π) +(2/π)Σ_(n=1) ^∞  ((1−(−1)^n e^(−π) )/(1+n^2 )) cos(nx) ⇒  x=0 ⇒1 =((1−e^(−π) )/π) +(2/π) Σ_(n=1) ^∞  (1/(1+n^2 )) −((2e^(−π) )/π)Σ_(n=1) ^∞  (((−1)^n )/(n^2  +1))  ⇒1 =((1−e^(−π) )/π) +(2/π)x −((2e^(−π) )/π)y  x=π ⇒e^(−π)  =((1−e^(−π) )/2) +(2/π)Σ_(n=1) ^∞ (−1)^n ((1−(−1)^n e^(−π) )/(n^2  +1)) ⇒  e^(−π)  =((1−e^(−π) )/2) +(2/π)Σ_(n=1) ^∞  (((−1)^n )/(n^2  +1))−((2e^(−π) )/π)Σ_(n=1) ^∞  (1/(n^2  +1))  =((1−e^(−π) )/2) +(2/π)y−((2e^(−π) )/π) x  we get the system   { (((2/π)x−((2e^(−π) )/π)y =1−((1−e^(−π) )/π)     ⇒)),((−((2e^(−π) )/π)x+(2/π)y =e^(−π) −((1−e^(−π) )/2))) :}   { ((2x−2e^(−π) y =π−1+e^(−π) )),((−2e^(−π)  x +2y =πe^(−π) −((π−πe^(−π) )/2))) :}  Δ_s =4−4e^(−2π)  ⇒x=(Δ_x /Δ)  Δ_x = determinant (((π−1+e^(−π)           −2e^(−π)    )),((πe^(−π) −((π−πe^(−π) )/2)      2)))=....  x =Σ_(n=1) ^∞  (1/(n^2  +1))   ....be continued...

letf(x)=exfunction2πperiodicevenwehavef(x)=a02+n=1ancos(nx)withan=2TTf(x)cos(nx)dx=22πππexcos(nx)dx=2π0πexcos(nx)dxπ2an=Re(0πex+inxdx)and0πe(1+in)xdx=[11+ine(1+in)x]0π=11in{e(1+in)π1}=1+in1+n2{(1)neπ1}=1(1)neπ1+n2+i(...)an=2π×1(1)neπ1+n2a0=2π(1eπ)a02=1eππex=1eππ+2πn=11(1)neπ1+n2cos(nx)x=01=1eππ+2πn=111+n22eππn=1(1)nn2+11=1eππ+2πx2eππyx=πeπ=1eπ2+2πn=1(1)n1(1)neπn2+1eπ=1eπ2+2πn=1(1)nn2+12eππn=11n2+1=1eπ2+2πy2eππxwegetthesystem{2πx2eππy=11eππ2eππx+2πy=eπ1eπ2{2x2eπy=π1+eπ2eπx+2y=πeπππeπ2Δs=44e2πx=ΔxΔΔx=|π1+eπ2eππeπππeπ22|=....x=n=11n2+1....becontinued...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com