Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 12144 by rish@bh last updated on 14/Apr/17

(1/(1+1^2 +1^4 ))+(2/(1+2^2 +2^4 ))+(3/(1+3^2 +3^4 ))+.....∞=?

11+12+14+21+22+24+31+32+34+.....=?

Answered by b.e.h.i.8.3.4.1.7@gmail.com last updated on 14/Apr/17

(n/(n^4 +n^2 +1))=(n/((n^2 +1)^2 −n^2 ))=(n/((n^2 +n+1)(n^2 −n+1)))=  (1/2).(((n^2 +n+1)−(n^2 −n+1))/((n^2 +n+1)(n^2 −n+1)))=  (1/2)((1/(n^2 −n+1))−(1/(n^2 +n+1)))  LHS=(1/2)[(1/1)−(1/3)+(1/3)−(1/7)+(1/7)−(1/(13)).....−(1/(n^2 +n+1))]=  =(1/2).(1−(1/(n^2 +n+1)))=((n^2 +n)/(2(n^2 +n+1)))  lim_(x→∝) LHS=(1/2)  .■

nn4+n2+1=n(n2+1)2n2=n(n2+n+1)(n2n+1)=12.(n2+n+1)(n2n+1)(n2+n+1)(n2n+1)=12(1n2n+11n2+n+1)LHS=12[1113+1317+17113.....1n2+n+1]==12.(11n2+n+1)=n2+n2(n2+n+1)limx→∝LHS=12.

Commented by rish@bh last updated on 14/Apr/17

Thanks

Thanks

Terms of Service

Privacy Policy

Contact: info@tinkutara.com