Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 121446 by mr W last updated on 08/Nov/20

Answered by liberty last updated on 08/Nov/20

u = x+(√(1+x^2 ))  u(y+(√(1+y^2 )) ) = 1 ⇒(√(1+y^2 )) = (1/u)−y  ⇒1+y^2 =(1/u^2 )−2(y/u)+y^2   ((2y)/u) = (1/u^2 )−u ⇒y=(1/2)((1/u)−u)  (1/u)=(1/(x+(√(1+x^2 )))) = −x+(√(1+x^2 ))  y=(1/2)(−x+(√(1+x^2 ))−x−(√(1+x^2 )) )  y=−x⇒x+y =0 ∧(x+y)^2 =0

u=x+1+x2u(y+1+y2)=11+y2=1uy1+y2=1u22yu+y22yu=1u2uy=12(1uu)1u=1x+1+x2=x+1+x2y=12(x+1+x2x1+x2)y=xx+y=0(x+y)2=0

Answered by MJS_new last updated on 08/Nov/20

0  let x=((p^2 −1)/(2p))∧y=((q^2 −1)/(2q))  ⇒ pq=1 ⇒ y=−((p^2 −1)/(2p)) ⇒ x+y=0

0letx=p212py=q212qpq=1y=p212px+y=0

Answered by mr W last updated on 08/Nov/20

(√(1+y^2 ))+y=(√(1+x^2 ))−x  x+y=(√(1+x^2 ))−(√(1+y^2 ))  x^2 +y^2 +2xy=1+x^2 +1+y^2 −2(√((1+x^2 )(1+y^2 )))  1−xy=(√((1+x^2 )(1+y^2 )))  1−2xy+x^2 y^2 =(1+x^2 )(1+y^2 )  1−2xy+x^2 y^2 =1+x^2 +y^2 +x^2 y^2   x^2 +y^2 +2xy=0  ⇒(x+y)^2 =0

1+y2+y=1+x2xx+y=1+x21+y2x2+y2+2xy=1+x2+1+y22(1+x2)(1+y2)1xy=(1+x2)(1+y2)12xy+x2y2=(1+x2)(1+y2)12xy+x2y2=1+x2+y2+x2y2x2+y2+2xy=0(x+y)2=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com