Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 121449 by liberty last updated on 08/Nov/20

   { ((x+y=3)),((x^5 +y^5 =33)) :}

{x+y=3x5+y5=33

Commented by Dwaipayan Shikari last updated on 08/Nov/20

x=1or 2  y=2 or 1      (By inspection)

x=1or2y=2or1(Byinspection)

Answered by MJS_new last updated on 08/Nov/20

x+y=a  x^5 +y^5 =b  let x=u−v∧y=u+v  (1) 2u=a ⇒ u=(a/2)  insert in (2)  5av^4 +((5a^3 )/2)v^2 +(a^5 /(16))=b  v^4 +(a^2 /2)v^2 +((a^5 −16b)/(80a))=0  v=±(√(−(a^2 /4)±((√(5(a^5 +4b)))/(10(√a)))))  [4 solutions]  in this case  u=(3/2)∧(v=±(1/2)∨v=±((√(19))/2)i)

x+y=ax5+y5=bletx=uvy=u+v(1)2u=au=a2insertin(2)5av4+5a32v2+a516=bv4+a22v2+a516b80a=0v=±a24±5(a5+4b)10a[4solutions]inthiscaseu=32(v=±12v=±192i)

Commented by liberty last updated on 08/Nov/20

yes..

yes..

Answered by bramlexs22 last updated on 08/Nov/20

let x+y=u=3 ∧xy=v  (x+y)^5 =x^5 +5x^4 y+10x^3 y^2 +10x^2 y^3 +5xy^4 +y^5   ⇔243=33+5xy(x^3 +y^3 )+10(xy)^2 (x+y)  ⇒210=5v((x+y)^3 −3xy(x+y))+30v^2   ⇒210=5v(27−9v)+30v^2   ⇒42=27v−9v^2 +6v^2   ⇒3v^2 −9v+14=0 → { ((v=2)),((v=7)) :}  case(1) v=2 ∧u=3  ⇒xy=2 ∧x+y=3 → { ((x=2∧y=1)),((x=1∧y=2)) :}  case(2) xy=7 ∧x+y=3  ⇒x(3−x)=7 , x^2 −3x+7=0  → { ((x=((3+i(√(19)))/2) →y=((3−i(√(19)))/2))),((x=((3−i(√(19)))/2)→y=((3+i(√(19)))/2))) :}

letx+y=u=3xy=v(x+y)5=x5+5x4y+10x3y2+10x2y3+5xy4+y5243=33+5xy(x3+y3)+10(xy)2(x+y)210=5v((x+y)33xy(x+y))+30v2210=5v(279v)+30v242=27v9v2+6v23v29v+14=0{v=2v=7case(1)v=2u=3xy=2x+y=3{x=2y=1x=1y=2case(2)xy=7x+y=3x(3x)=7,x23x+7=0{x=3+i192y=3i192x=3i192y=3+i192

Commented by liberty last updated on 08/Nov/20

gave kudos

gavekudos

Answered by mr W last updated on 08/Nov/20

(x+y)^5 =x^5 +5x^4 y+10x^3 y^2 +10x^2 y^3 +5xy^4 +y^5   3^5 =33+5xy(x^3 +2x^2 y+2xy^2 +y^3 )  3^5 =33+5xy[x^3 +3x^2 y+3xy^2 +y^3 −xy(x+y)]  3^5 =33+5xy[(x+y)^3 −xy(x+y)]  3^5 =33+5xy(3^3 −3xy)  14=xy(9−xy)  (xy)^2 −9(xy)+14=0  (xy−2)(xy−7)=0  ⇒xy=2 or 7  z^2 −3z+2=0 ⇒(x,y)=1,2  z^2 −3z+7=0 ⇒(x,y)=((3+i(√(19)))/2),((3−i(√(19)))/2)

(x+y)5=x5+5x4y+10x3y2+10x2y3+5xy4+y535=33+5xy(x3+2x2y+2xy2+y3)35=33+5xy[x3+3x2y+3xy2+y3xy(x+y)]35=33+5xy[(x+y)3xy(x+y)]35=33+5xy(333xy)14=xy(9xy)(xy)29(xy)+14=0(xy2)(xy7)=0xy=2or7z23z+2=0(x,y)=1,2z23z+7=0(x,y)=3+i192,3i192

Commented by liberty last updated on 08/Nov/20

yess...

yess...

Commented by harckinwunmy last updated on 08/Nov/20

ff

ff

Terms of Service

Privacy Policy

Contact: info@tinkutara.com