Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 121454 by Dwaipayan Shikari last updated on 08/Nov/20

1+(1/1^2 )+(1/2^2 )+...+(1/((1.2)^2 ))+(1/((2.3)^2 ))+...+(1/((1.2.3)^2 ))+(1/((2.3.4)^2 ))+...+(1/((1.2.3.4)^2 ))+.....    Or  1+Σ_(n=1) ^∞ (1/n^2 )+Σ_(n=1) ^∞ (1/((n(n+1))^2 ))+Σ^∞ (1/((n(n+1)(n+2))^2 ))+.....

$$\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{2}} }+...+\frac{\mathrm{1}}{\left(\mathrm{1}.\mathrm{2}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{2}.\mathrm{3}\right)^{\mathrm{2}} }+...+\frac{\mathrm{1}}{\left(\mathrm{1}.\mathrm{2}.\mathrm{3}\right)^{\mathrm{2}} }+\frac{\mathrm{1}}{\left(\mathrm{2}.\mathrm{3}.\mathrm{4}\right)^{\mathrm{2}} }+...+\frac{\mathrm{1}}{\left(\mathrm{1}.\mathrm{2}.\mathrm{3}.\mathrm{4}\right)^{\mathrm{2}} }+..... \\ $$$$ \\ $$$${Or} \\ $$$$\mathrm{1}+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} }+\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}\left({n}+\mathrm{1}\right)\right)^{\mathrm{2}} }+\overset{\infty} {\sum}\frac{\mathrm{1}}{\left({n}\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\right)^{\mathrm{2}} }+..... \\ $$

Commented by Dwaipayan Shikari last updated on 08/Nov/20

I think all terms should be Π_(n=1) ^∞ (1+(1/n^2 ))

$${I}\:{think}\:{all}\:{terms}\:{should}\:{be}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right) \\ $$

Commented by mindispower last updated on 09/Nov/20

((sin(x))/x)=Π_(n≥1) (1−(x^2 /(n^2 π^2 )))  x=i⇒((sin(iπ))/(iπ))=Π(1+(1/(n^2 π^2 )))=((sh(π))/π)  ln(Π_(n≥1) (1+(1/n^2 )))=Σ_(n≥1) ln(1+(1/n^2 ))=Σ.Σ_(k≥1) (((−1)^k )/(kn^(2k) ))  =Σ_(k≥1) (((−1)^k )/k)Σ_(n≥1) (1/n^(2k) )=Σ_(k≥1) (((−1)^k )/k)ζ(2k)  we[get nice identitie  Σ(((−1)^k ζ(2k))/k)=((sh(π))/π)

$$\frac{{sin}\left({x}\right)}{{x}}=\underset{{n}\geqslant\mathrm{1}} {\prod}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\right) \\ $$$${x}={i}\Rightarrow\frac{{sin}\left({i}\pi\right)}{{i}\pi}=\Pi\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\right)=\frac{{sh}\left(\pi\right)}{\pi} \\ $$$${ln}\left(\underset{{n}\geqslant\mathrm{1}} {\prod}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)\right)=\underset{{n}\geqslant\mathrm{1}} {\sum}{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)=\Sigma.\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{{kn}^{\mathrm{2}{k}} } \\ $$$$=\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{n}^{\mathrm{2}{k}} }=\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}}\zeta\left(\mathrm{2}{k}\right) \\ $$$${we}\left[{get}\:{nice}\:{identitie}\right. \\ $$$$\Sigma\frac{\left(−\mathrm{1}\right)^{{k}} \zeta\left(\mathrm{2}{k}\right)}{{k}}=\frac{{sh}\left(\pi\right)}{\pi} \\ $$$$ \\ $$

Answered by Olaf last updated on 08/Nov/20

S = Σ_(k=0) ^∞ Σ_(n=1) ^∞ (1/(Π_(p=n) ^(n+k) p^2 ))  S = Σ_(k=0) ^∞ Σ_(n=1) ^∞ (((n−1)!^2 )/((n+k)!^2 ))  S = Σ_(n=1) ^∞ Σ_(k=0) ^∞ (((n−1)!^2 )/((n+k)!^2 ))  S = Σ_(n=1) ^∞ (n−1)!^2 Σ_(k=0) ^∞ (1/((n+k)!^2 ))  ...see Bessel functions

$$\mathrm{S}\:=\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\underset{{p}={n}} {\overset{{n}+{k}} {\prod}}{p}^{\mathrm{2}} } \\ $$$$\mathrm{S}\:=\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left({n}−\mathrm{1}\right)!^{\mathrm{2}} }{\left({n}+{k}\right)!^{\mathrm{2}} } \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({n}−\mathrm{1}\right)!^{\mathrm{2}} }{\left({n}+{k}\right)!^{\mathrm{2}} } \\ $$$$\mathrm{S}\:=\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left({n}−\mathrm{1}\right)!^{\mathrm{2}} \underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}+{k}\right)!^{\mathrm{2}} } \\ $$$$...\mathrm{see}\:\mathrm{Bessel}\:\mathrm{functions}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com