All Questions Topic List
Others Questions
Previous in All Question Next in All Question
Previous in Others Next in Others
Question Number 121454 by Dwaipayan Shikari last updated on 08/Nov/20
1+112+122+...+1(1.2)2+1(2.3)2+...+1(1.2.3)2+1(2.3.4)2+...+1(1.2.3.4)2+.....Or1+∑∞n=11n2+∑∞n=11(n(n+1))2+∑∞1(n(n+1)(n+2))2+.....
Commented by Dwaipayan Shikari last updated on 08/Nov/20
Ithinkalltermsshouldbe∏∞n=1(1+1n2)
Commented by mindispower last updated on 09/Nov/20
sin(x)x=∏n⩾1(1−x2n2π2)x=i⇒sin(iπ)iπ=Π(1+1n2π2)=sh(π)πln(∏n⩾1(1+1n2))=∑n⩾1ln(1+1n2)=Σ.∑k⩾1(−1)kkn2k=∑k⩾1(−1)kk∑n⩾11n2k=∑k⩾1(−1)kkζ(2k)we[getniceidentitieΣ(−1)kζ(2k)k=sh(π)π
Answered by Olaf last updated on 08/Nov/20
S=∑∞k=0∑∞n=11∏n+kp=np2S=∑∞k=0∑∞n=1(n−1)!2(n+k)!2S=∑∞n=1∑∞k=0(n−1)!2(n+k)!2S=∑∞n=1(n−1)!2∑∞k=01(n+k)!2...seeBesselfunctions
Terms of Service
Privacy Policy
Contact: info@tinkutara.com