All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 121498 by Lordose last updated on 08/Nov/20
Evaluate∑∞n=1sin(n)n
Answered by Bird last updated on 09/Nov/20
letfindS(x)=∑n=1∞sin(nx)ndxS(x)=Im(∑n=1∞einxn)and∑n=1∞einxn=∑n=1∞(eix)nn=−ln(1−eix)=−ln(1−cosx−isinx)=−ln(2sin2(x2)−2isin(x2)cos(x2))=−ln(−2isin(x2)eix2)=−ln(−2)−ln(i)−ln(sin(x2))−ix2=−ln(2)−iπ−iπ2−ix2−ln(sin(x2))=−ln2−ln(sin(x2))−ix2−3iπ2⇒Σsin(nx)n=−x+3π2x=1⇒Σsin(n)n=−3π+12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com