Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121548 by benjo_mathlover last updated on 09/Nov/20

 ∫_0 ^(π/4)  tan^6 x sec x dx =?

π/40tan6xsecxdx=?

Answered by MJS_new last updated on 09/Nov/20

∫tan^6  x sec x dx=∫((sin^6  x)/(cos^7  x))dx=       [t=(1/(sin x)) → dx=−((sin^2  x)/(cos x))]  =−∫(dt/((t^2 −1)^4 ))=       [Ostrogradski′s Method]  =((t(15t^4 −40t^2 +33))/(48(t^2 −1)^3 ))+(5/(16))∫(dt/(t^2 −1))=  =((t(15t^4 −40t^2 +33))/(48(t^2 −1)^3 ))+(5/(32))ln ∣((t−1)/(t+1))∣  the borders are x∈[0; (π/4)] ⇔ t∈]+∞; (√2)]  ⇒ answer is  −[((t(15t^4 −40t^2 +33))/(48(t^2 −1)^3 ))+(5/(32))ln ∣((t−1)/(t+1))∣]_(√2) ^(+∞) =  =((13(√2))/(48))+(5/(16))ln (−1+(√2))

tan6xsecxdx=sin6xcos7xdx=[t=1sinxdx=sin2xcosx]=dt(t21)4=[OstrogradskisMethod]=t(15t440t2+33)48(t21)3+516dtt21==t(15t440t2+33)48(t21)3+532lnt1t+1thebordersarex[0;π4]t]+;2]answeris[t(15t440t2+33)48(t21)3+532lnt1t+1]2+==13248+516ln(1+2)

Commented by liberty last updated on 09/Nov/20

waw...Your method good sir

waw...Yourmethodgoodsir

Commented by Fareed last updated on 09/Nov/20

    please solve it too  p(x,y)=2x^3 y+8xy^3   find the  (a_4 =?)

pleasesolveittoop(x,y)=2x3y+8xy3findthe(a4=?)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com