Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 121585 by Algoritm last updated on 09/Nov/20

Commented by Algoritm last updated on 09/Nov/20

answer: x=2(√2)−3

$$\boldsymbol{\mathrm{answer}}:\:\boldsymbol{\mathrm{x}}=\mathrm{2}\sqrt{\mathrm{2}}−\mathrm{3} \\ $$

Commented by MJS_new last updated on 09/Nov/20

x=re^(iθ)   if we stay strictly real x∈R ⇒ θ=0∨θ=π  usually we define x∈R: x^(1/3) =∣x∣^(1/3) sign (x)  but if we′re in C we use the root  x^(1/3) =r^(1/3) e^(i(θ/3))  which is ∉R for x∈R^−   so we have to decide. if we use the 1^(st)  definition  (strictly real) we get  (x^3 +7x^2 +16x+5)^3 =(−3x^2 −7x+5)(1−2x)^3   x^9 +21x^8 +195x^7 +1030x^6 +3306x^5 +6571x^4 +7637x^3 +4266x^2 +1237x+120=0  (x+3)(x^2 +6x+1)(x^6 +12x^5 +68x^4 +187x^3 +295x^2 +159x+40)=0  x_1 =−3−2(√2)  x_2 =−3  x_3 =−3+2(√2)  if we use the 2^(nd)  definition we get  x_1 =−3+2(√2)  x_(2, 3) ≈−3.99799±3.26066i

$${x}={r}\mathrm{e}^{\mathrm{i}\theta} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{stay}\:\mathrm{strictly}\:\mathrm{real}\:{x}\in\mathbb{R}\:\Rightarrow\:\theta=\mathrm{0}\vee\theta=\pi \\ $$$$\mathrm{usually}\:\mathrm{we}\:\mathrm{define}\:{x}\in\mathbb{R}:\:{x}^{\mathrm{1}/\mathrm{3}} =\mid{x}\mid^{\mathrm{1}/\mathrm{3}} \mathrm{sign}\:\left({x}\right) \\ $$$$\mathrm{but}\:\mathrm{if}\:\mathrm{we}'\mathrm{re}\:\mathrm{in}\:\mathbb{C}\:\mathrm{we}\:\mathrm{use}\:\mathrm{the}\:\mathrm{root} \\ $$$${x}^{\mathrm{1}/\mathrm{3}} ={r}^{\mathrm{1}/\mathrm{3}} \mathrm{e}^{\mathrm{i}\frac{\theta}{\mathrm{3}}} \:\mathrm{which}\:\mathrm{is}\:\notin\mathbb{R}\:\mathrm{for}\:{x}\in\mathbb{R}^{−} \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{decide}.\:\mathrm{if}\:\mathrm{we}\:\mathrm{use}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{definition} \\ $$$$\left(\mathrm{strictly}\:\mathrm{real}\right)\:\mathrm{we}\:\mathrm{get} \\ $$$$\left({x}^{\mathrm{3}} +\mathrm{7}{x}^{\mathrm{2}} +\mathrm{16}{x}+\mathrm{5}\right)^{\mathrm{3}} =\left(−\mathrm{3}{x}^{\mathrm{2}} −\mathrm{7}{x}+\mathrm{5}\right)\left(\mathrm{1}−\mathrm{2}{x}\right)^{\mathrm{3}} \\ $$$${x}^{\mathrm{9}} +\mathrm{21}{x}^{\mathrm{8}} +\mathrm{195}{x}^{\mathrm{7}} +\mathrm{1030}{x}^{\mathrm{6}} +\mathrm{3306}{x}^{\mathrm{5}} +\mathrm{6571}{x}^{\mathrm{4}} +\mathrm{7637}{x}^{\mathrm{3}} +\mathrm{4266}{x}^{\mathrm{2}} +\mathrm{1237}{x}+\mathrm{120}=\mathrm{0} \\ $$$$\left({x}+\mathrm{3}\right)\left({x}^{\mathrm{2}} +\mathrm{6}{x}+\mathrm{1}\right)\left({x}^{\mathrm{6}} +\mathrm{12}{x}^{\mathrm{5}} +\mathrm{68}{x}^{\mathrm{4}} +\mathrm{187}{x}^{\mathrm{3}} +\mathrm{295}{x}^{\mathrm{2}} +\mathrm{159}{x}+\mathrm{40}\right)=\mathrm{0} \\ $$$${x}_{\mathrm{1}} =−\mathrm{3}−\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${x}_{\mathrm{2}} =−\mathrm{3} \\ $$$${x}_{\mathrm{3}} =−\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{use}\:\mathrm{the}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{definition}\:\mathrm{we}\:\mathrm{get} \\ $$$${x}_{\mathrm{1}} =−\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}} \\ $$$${x}_{\mathrm{2},\:\mathrm{3}} \approx−\mathrm{3}.\mathrm{99799}\pm\mathrm{3}.\mathrm{26066i} \\ $$

Commented by Dwaipayan Shikari last updated on 09/Nov/20

Sir, how did you factorize it?

$${Sir},\:{how}\:{did}\:{you}\:{factorize}\:{it}? \\ $$

Commented by MJS_new last updated on 09/Nov/20

−3 was easy to find (try factors of the  constant). the rest usually depends on good  luck. you can approximate the real solutions  and try to see if they “are something” or  you must use software  in this case −3+2(√2) was given, so I tried  it and then very often the conjugate is also  a solution  for solutions that cannot be written as   a±(√b) you have to use software. or spend lots  of time...

$$−\mathrm{3}\:\mathrm{was}\:\mathrm{easy}\:\mathrm{to}\:\mathrm{find}\:\left(\mathrm{try}\:\mathrm{factors}\:\mathrm{of}\:\mathrm{the}\right. \\ $$$$\left.\mathrm{constant}\right).\:\mathrm{the}\:\mathrm{rest}\:\mathrm{usually}\:\mathrm{depends}\:\mathrm{on}\:\mathrm{good} \\ $$$$\mathrm{luck}.\:\mathrm{you}\:\mathrm{can}\:\mathrm{approximate}\:\mathrm{the}\:\mathrm{real}\:\mathrm{solutions} \\ $$$$\mathrm{and}\:\mathrm{try}\:\mathrm{to}\:\mathrm{see}\:\mathrm{if}\:\mathrm{they}\:``\mathrm{are}\:\mathrm{something}''\:\mathrm{or} \\ $$$$\mathrm{you}\:\mathrm{must}\:\mathrm{use}\:\mathrm{software} \\ $$$$\mathrm{in}\:\mathrm{this}\:\mathrm{case}\:−\mathrm{3}+\mathrm{2}\sqrt{\mathrm{2}}\:\mathrm{was}\:\mathrm{given},\:\mathrm{so}\:\mathrm{I}\:\mathrm{tried} \\ $$$$\mathrm{it}\:\mathrm{and}\:\mathrm{then}\:\mathrm{very}\:\mathrm{often}\:\mathrm{the}\:\mathrm{conjugate}\:\mathrm{is}\:\mathrm{also} \\ $$$$\mathrm{a}\:\mathrm{solution} \\ $$$$\mathrm{for}\:\mathrm{solutions}\:\mathrm{that}\:\mathrm{cannot}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as}\: \\ $$$${a}\pm\sqrt{{b}}\:\mathrm{you}\:\mathrm{have}\:\mathrm{to}\:\mathrm{use}\:\mathrm{software}.\:\mathrm{or}\:\mathrm{spend}\:\mathrm{lots} \\ $$$$\mathrm{of}\:\mathrm{time}... \\ $$

Commented by Dwaipayan Shikari last updated on 09/Nov/20

Suppose a given x^5 −x^3 +x−2=0   And we are asked to factorize it , then which method we should  apply sir?

$${Suppose}\:{a}\:{given}\:{x}^{\mathrm{5}} −{x}^{\mathrm{3}} +{x}−\mathrm{2}=\mathrm{0}\: \\ $$$${And}\:{we}\:{are}\:{asked}\:{to}\:{factorize}\:{it}\:,\:{then}\:{which}\:{method}\:{we}\:{should} \\ $$$${apply}\:{sir}? \\ $$

Commented by MJS_new last updated on 09/Nov/20

first, try ±2, ±1 ⇒ no solution  then find the number of real zeros. plot it or  go on like this:  y′=5x^4 −3x^2 +1=0  this has no real solutions ⇒ y has no extremes  ⇒ as it′s a (2n+1)^(th)  degree polynomial it  must have exactly 1 real solution  if we are lucky it can be written as  y=(x^2 +ax+b)(x^3 +αx^2 +βx+γ)  which gives  (1) a+α=0  (2) aα+b+β+1=0  (3) aβ+bα+γ=0  (4) aγ+bβ−1=0  (5) bγ+2=0  solving this is not easy but possible  we get a “nice” solution  a=β=−1  b=α=1  γ=−2  but in most cases this won′t lead to exact  values for these factors.  try  x^5 +2x^3 −3x+5

$$\mathrm{first},\:\mathrm{try}\:\pm\mathrm{2},\:\pm\mathrm{1}\:\Rightarrow\:\mathrm{no}\:\mathrm{solution} \\ $$$$\mathrm{then}\:\mathrm{find}\:\mathrm{the}\:\mathrm{number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{zeros}.\:\mathrm{plot}\:\mathrm{it}\:\mathrm{or} \\ $$$$\mathrm{go}\:\mathrm{on}\:\mathrm{like}\:\mathrm{this}: \\ $$$${y}'=\mathrm{5}{x}^{\mathrm{4}} −\mathrm{3}{x}^{\mathrm{2}} +\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{this}\:\mathrm{has}\:\mathrm{no}\:\mathrm{real}\:\mathrm{solutions}\:\Rightarrow\:{y}\:\mathrm{has}\:\mathrm{no}\:\mathrm{extremes} \\ $$$$\Rightarrow\:\mathrm{as}\:\mathrm{it}'\mathrm{s}\:\mathrm{a}\:\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{th}} \:\mathrm{degree}\:\mathrm{polynomial}\:\mathrm{it} \\ $$$$\mathrm{must}\:\mathrm{have}\:\mathrm{exactly}\:\mathrm{1}\:\mathrm{real}\:\mathrm{solution} \\ $$$$\mathrm{if}\:\mathrm{we}\:\mathrm{are}\:\mathrm{lucky}\:\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{written}\:\mathrm{as} \\ $$$${y}=\left({x}^{\mathrm{2}} +{ax}+{b}\right)\left({x}^{\mathrm{3}} +\alpha{x}^{\mathrm{2}} +\beta{x}+\gamma\right) \\ $$$$\mathrm{which}\:\mathrm{gives} \\ $$$$\left(\mathrm{1}\right)\:{a}+\alpha=\mathrm{0} \\ $$$$\left(\mathrm{2}\right)\:{a}\alpha+{b}+\beta+\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{3}\right)\:{a}\beta+{b}\alpha+\gamma=\mathrm{0} \\ $$$$\left(\mathrm{4}\right)\:{a}\gamma+{b}\beta−\mathrm{1}=\mathrm{0} \\ $$$$\left(\mathrm{5}\right)\:{b}\gamma+\mathrm{2}=\mathrm{0} \\ $$$$\mathrm{solving}\:\mathrm{this}\:\mathrm{is}\:\mathrm{not}\:\mathrm{easy}\:\mathrm{but}\:\mathrm{possible} \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{a}\:``\mathrm{nice}''\:\mathrm{solution} \\ $$$${a}=\beta=−\mathrm{1} \\ $$$${b}=\alpha=\mathrm{1} \\ $$$$\gamma=−\mathrm{2} \\ $$$$\mathrm{but}\:\mathrm{in}\:\mathrm{most}\:\mathrm{cases}\:\mathrm{this}\:\mathrm{won}'\mathrm{t}\:\mathrm{lead}\:\mathrm{to}\:\mathrm{exact} \\ $$$$\mathrm{values}\:\mathrm{for}\:\mathrm{these}\:\mathrm{factors}. \\ $$$$\mathrm{try} \\ $$$${x}^{\mathrm{5}} +\mathrm{2}{x}^{\mathrm{3}} −\mathrm{3}{x}+\mathrm{5} \\ $$

Commented by Dwaipayan Shikari last updated on 10/Nov/20

Thanking you

$${Thanking}\:{you}\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com