Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121601 by benjo_mathlover last updated on 09/Nov/20

  ∫ (dx/(x (√(3+x^2 )))) ?

dxx3+x2?

Answered by liberty last updated on 10/Nov/20

let x = (√3) tan γ   I= ∫ (((√3) sec^2 γ)/( (√3) tan γ (√(3+3tan^2 γ)))) dγ  I= (1/( (√3))) ∫ ((sec γ)/(tan γ)) dγ = (1/( (√3))) ∫ (1/(sin γ)) dγ  I=(1/( (√3))) ∫ cosec γ dγ = (1/( (√3))) ln ∣cosec γ−cot γ∣ + c  I=(1/( (√3))) ln ∣(((√(3+x^2 )) −(√3))/x) ∣ + c

letx=3tanγI=3sec2γ3tanγ3+3tan2γdγI=13secγtanγdγ=131sinγdγI=13cosecγdγ=13lncosecγcotγ+cI=13ln3+x23x+c

Answered by Olaf last updated on 10/Nov/20

x = (√3)sinhu  I = ∫(((√3)coshu)/( (√3)sinhu(√(3+3sinh^2 u))))du  I = (1/( (√3)))∫(du/( sinhu))  I = (1/( (√3)))∫(du/( ((e^u −e^(−u) )/2)))  I = (2/( (√3)))∫((e^u du)/(e^(2u) −1))  I = (1/( (√3)))∫[(1/(e^u −1))−(1/(e^u +1))]e^u du  I = (1/( (√3)))ln∣((e^u −1)/(e^u +1))∣  I = (1/( (√3)))ln∣((e^(u/2) −e^(−u/2) )/(e^(u/2) +e^(−u/2) ))∣  I = (1/( (√3)))ln∣tanh((u/2))∣  I = (1/( (√3)))ln∣tanh((1/2)argsinh((x/( (√3)))))∣

x=3sinhuI=3coshu3sinhu3+3sinh2uduI=13dusinhuI=13dueueu2I=23eudue2u1I=13[1eu11eu+1]euduI=13lneu1eu+1I=13lneu/2eu/2eu/2+eu/2I=13lntanh(u2)I=13lntanh(12argsinh(x3))

Answered by Dwaipayan Shikari last updated on 10/Nov/20

∫(dx/(x(√(3+x^2 ))))  ∫((sec^2 θ)/( (√3)tanθ secθ))dθ       x=(√3)tanθ  =(1/( (√3)))∫(1/(sinθ))dθ=(1/3)log(tan(θ/2))+C                   =(1/( (√3)))log(((−(√3)+(√(3+x^2 )))/( x)))+C

dxx3+x2sec2θ3tanθsecθdθx=3tanθ=131sinθdθ=13log(tanθ2)+C=13log(3+3+x2x)+C

Answered by TANMAY PANACEA last updated on 10/Nov/20

∫((xdx)/(x^2 (√(3+x^2 )) ))  t^2 =3+x^2 →2tdt=xdx  ∫((tdt)/((t^2 −3)×t))=∫(dt/(t^2 −3))  =(1/(2(√3)))ln(((t−(√3))/(t+(√3))))+c  =(1/(2(√3)))ln((((√(3+x^2 )) −(√3))/( (√(3+x^2 )) +(√3))))+c

xdxx23+x2t2=3+x22tdt=xdxtdt(t23)×t=dtt23=123ln(t3t+3)+c=123ln(3+x233+x2+3)+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com