Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121602 by benjo_mathlover last updated on 09/Nov/20

Answered by liberty last updated on 10/Nov/20

I=∫_0 ^(π/2)  (dx/(b^2  tan^2 x+1))  let φ=b tan x ⇒dφ=bsec^2 x dx    dx = (φ/(φ^2 +1)) dφ   I=∫_0 ^∞  ((φ dφ)/((b^2 +φ^2 )(1+φ^2 ))) = (b/(b^2 −1))∫_0 ^∞  [ (1/(1+φ^2 ))−(1/(b^2 +φ^2 )) ] dφ  I= (b/(b^2 −1)) [ tan^(−1) (φ)−tan^(−1) ((φ/b)) ]_0 ^∞   I= (b/(b^2 −1)) [ (π/2) − (π/(2b)) ]  I=(π/2) (1−(1/b))((b/(b^2 −1))) = (π/2)(((b−1)/b))((b/((b−1)(b+1))))  I= (π/(2(b+1))) .▲

I=π/20dxb2tan2x+1letϕ=btanxdϕ=bsec2xdxdx=ϕϕ2+1dϕI=0ϕdϕ(b2+ϕ2)(1+ϕ2)=bb210[11+ϕ21b2+ϕ2]dϕI=bb21[tan1(ϕ)tan1(ϕb)]0I=bb21[π2π2b]I=π2(11b)(bb21)=π2(b1b)(b(b1)(b+1))I=π2(b+1).

Answered by Olaf last updated on 10/Nov/20

1) b = 0  I = ∫_0 ^(π/2) dx = (π/2)    2) b = ±1  I = ∫_0 ^(π/2) (dx/(1+tan^2 x))  I = ∫_0 ^(π/2) cos^2 xdx  I = ∫_0 ^(π/2) ((1+cos(2x))/2)dx  I = [(1/2)x+(1/4)sin(2x)]_0 ^(π/2)   I = (π/4)    3) General case : b ≠ 0, b ≠ ±1  u = tanx  du = (1+tan^2 x)dx = (1+u^2 )dx  I = ∫_0 ^∞ (du/((b^2 u^2 +1)(u^2 +1)))  I = (1/(b^2 −1))∫_0 ^∞ [(b^2 /(b^2 u^2 +1))−(1/(1+u^2 ))]du  I = (1/(b^2 −1))∫_0 ^∞ [(1/((1/b^2 )+u^2 ))−(1/(1+u^2 ))]du  I = (1/(b^2 −1))[barctan(bu)−arctanu]_0 ^∞   I = (1/(b^2 −1))[(b×sign(b)(π/2)−(π/2))−(b(π/4)−(π/4))]  I = (1/(b^2 −1))[(π/2)(∣b∣−1)−(π/4)(b−1)]  If b>0 :  I = (1/(b^2 −1))[(π/2)(b−1)−(π/4)(b−1)]  I = (1/(b+1))[(π/2)−(π/4)] = (π/(4(b+1)))  If b<0 :  I = (1/(b^2 −1))[(π/2)(−b−1)−(π/4)(b−1)]  I = (π/(4(b^2 −1)))[2(−b−1)−(b−1)]  I = (π/(4(b^2 −1)))(−3b−3)  I = −((3π)/(4(b−1)))

1)b=0I=0π2dx=π22)b=±1I=0π2dx1+tan2xI=0π2cos2xdxI=0π21+cos(2x)2dxI=[12x+14sin(2x)]0π2I=π43)Generalcase:b0,b±1u=tanxdu=(1+tan2x)dx=(1+u2)dxI=0du(b2u2+1)(u2+1)I=1b210[b2b2u2+111+u2]duI=1b210[11b2+u211+u2]duI=1b21[barctan(bu)arctanu]0I=1b21[(b×sign(b)π2π2)(bπ4π4)]I=1b21[π2(b1)π4(b1)]Ifb>0:I=1b21[π2(b1)π4(b1)]I=1b+1[π2π4]=π4(b+1)Ifb<0:I=1b21[π2(b1)π4(b1)]I=π4(b21)[2(b1)(b1)]I=π4(b21)(3b3)I=3π4(b1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com