All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 121602 by benjo_mathlover last updated on 09/Nov/20
Answered by liberty last updated on 10/Nov/20
I=∫π/20dxb2tan2x+1letϕ=btanx⇒dϕ=bsec2xdxdx=ϕϕ2+1dϕI=∫∞0ϕdϕ(b2+ϕ2)(1+ϕ2)=bb2−1∫∞0[11+ϕ2−1b2+ϕ2]dϕI=bb2−1[tan−1(ϕ)−tan−1(ϕb)]0∞I=bb2−1[π2−π2b]I=π2(1−1b)(bb2−1)=π2(b−1b)(b(b−1)(b+1))I=π2(b+1).▴
Answered by Olaf last updated on 10/Nov/20
1)b=0I=∫0π2dx=π22)b=±1I=∫0π2dx1+tan2xI=∫0π2cos2xdxI=∫0π21+cos(2x)2dxI=[12x+14sin(2x)]0π2I=π43)Generalcase:b≠0,b≠±1u=tanxdu=(1+tan2x)dx=(1+u2)dxI=∫0∞du(b2u2+1)(u2+1)I=1b2−1∫0∞[b2b2u2+1−11+u2]duI=1b2−1∫0∞[11b2+u2−11+u2]duI=1b2−1[barctan(bu)−arctanu]0∞I=1b2−1[(b×sign(b)π2−π2)−(bπ4−π4)]I=1b2−1[π2(∣b∣−1)−π4(b−1)]Ifb>0:I=1b2−1[π2(b−1)−π4(b−1)]I=1b+1[π2−π4]=π4(b+1)Ifb<0:I=1b2−1[π2(−b−1)−π4(b−1)]I=π4(b2−1)[2(−b−1)−(b−1)]I=π4(b2−1)(−3b−3)I=−3π4(b−1)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com