All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 121608 by naka3546 last updated on 10/Nov/20
(62020+82020)mod49?Showyourelegantworkings,please.Thanksalot.
Answered by mr W last updated on 10/Nov/20
62020+82020=(7−1)2020+(7+1)2020=(1−7)2020+(1+7)2020=∑2020k=0Ck2020(−1)k7k+∑2020k=0Ck20207k=∑2020k=0,2,...2Ck20207k=2+2∑1010k=1C2k202072k=2+2∑1010k=1C2k202049k⇒(62020+82020)mod49=2
Answered by Rasheed.Sindhi last updated on 10/Nov/20
≡AnOtherWay≡∙67≡−1(mod49)2020=7×288+4(67)288(6)4≡(−1)144(−1)4(mod49)62020≡1(mod49)....................A∙87≡1(mod49)(87)288(8)4≡(1)288(1)4(mod49)82020≡1(mod49).................BA+B:62020+82020≡2(mod49)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com