Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 121608 by naka3546 last updated on 10/Nov/20

(6^(2020)  + 8^(2020) ) mod 49  ?  Show  your  elegant  workings , please.  Thanks  a lot.

$$\left(\mathrm{6}^{\mathrm{2020}} \:+\:\mathrm{8}^{\mathrm{2020}} \right)\:{mod}\:\mathrm{49}\:\:? \\ $$$${Show}\:\:{your}\:\:{elegant}\:\:{workings}\:,\:{please}. \\ $$$${Thanks}\:\:{a}\:{lot}. \\ $$

Answered by mr W last updated on 10/Nov/20

6^(2020) +8^(2020)   =(7−1)^(2020) +(7+1)^(2020)   =(1−7)^(2020) +(1+7)^(2020)   =Σ_(k=0) ^(2020) C_k ^(2020) (−1)^k 7^k +Σ_(k=0) ^(2020) C_k ^(2020) 7^k   =Σ_(k=0,2,...) ^(2020) 2C_k ^(2020) 7^k   =2+2Σ_(k=1) ^(1010) C_(2k) ^(2020) 7^(2k)   =2+2Σ_(k=1) ^(1010) C_(2k) ^(2020) 49^k   ⇒(6^(2020) +8^(2020) ) mod 49=2

$$\mathrm{6}^{\mathrm{2020}} +\mathrm{8}^{\mathrm{2020}} \\ $$$$=\left(\mathrm{7}−\mathrm{1}\right)^{\mathrm{2020}} +\left(\mathrm{7}+\mathrm{1}\right)^{\mathrm{2020}} \\ $$$$=\left(\mathrm{1}−\mathrm{7}\right)^{\mathrm{2020}} +\left(\mathrm{1}+\mathrm{7}\right)^{\mathrm{2020}} \\ $$$$=\underset{{k}=\mathrm{0}} {\overset{\mathrm{2020}} {\sum}}{C}_{{k}} ^{\mathrm{2020}} \left(−\mathrm{1}\right)^{{k}} \mathrm{7}^{{k}} +\underset{{k}=\mathrm{0}} {\overset{\mathrm{2020}} {\sum}}{C}_{{k}} ^{\mathrm{2020}} \mathrm{7}^{{k}} \\ $$$$=\underset{{k}=\mathrm{0},\mathrm{2},...} {\overset{\mathrm{2020}} {\sum}}\mathrm{2}{C}_{{k}} ^{\mathrm{2020}} \mathrm{7}^{{k}} \\ $$$$=\mathrm{2}+\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{\mathrm{1010}} {\sum}}{C}_{\mathrm{2}{k}} ^{\mathrm{2020}} \mathrm{7}^{\mathrm{2}{k}} \\ $$$$=\mathrm{2}+\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{\mathrm{1010}} {\sum}}{C}_{\mathrm{2}{k}} ^{\mathrm{2020}} \mathrm{49}^{{k}} \\ $$$$\Rightarrow\left(\mathrm{6}^{\mathrm{2020}} +\mathrm{8}^{\mathrm{2020}} \right)\:{mod}\:\mathrm{49}=\mathrm{2} \\ $$

Answered by Rasheed.Sindhi last updated on 10/Nov/20

              ≡ An Other Way ≡  ^• 6^7 ≡−1(mod49)     2020=7×288+4  (6^7 )^(288) (6)^4 ≡(−1)^(144) (−1)^4 (mod49)  6^(2020) ≡1(mod49)....................A    ^• 8^7 ≡1(mod49)  (8^7 )^(288) (8)^4 ≡(1)^(288) (1)^4 (mod49)  8^(2020) ≡1(mod 49).................B  A+B:  6^(2020) +8^(2020) ≡2(mod49)

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\equiv\:\mathbb{A}\mathrm{n}\:\mathbb{O}\mathrm{ther}\:\mathbb{W}\mathrm{ay}\:\equiv \\ $$$$\:^{\bullet} \mathrm{6}^{\mathrm{7}} \equiv−\mathrm{1}\left({mod}\mathrm{49}\right)\: \\ $$$$\:\:\mathrm{2020}=\mathrm{7}×\mathrm{288}+\mathrm{4} \\ $$$$\left(\mathrm{6}^{\mathrm{7}} \right)^{\mathrm{288}} \left(\mathrm{6}\right)^{\mathrm{4}} \equiv\left(−\mathrm{1}\right)^{\mathrm{144}} \left(−\mathrm{1}\right)^{\mathrm{4}} \left({mod}\mathrm{49}\right) \\ $$$$\mathrm{6}^{\mathrm{2020}} \equiv\mathrm{1}\left({mod}\mathrm{49}\right)....................{A} \\ $$$$ \\ $$$$\:^{\bullet} \mathrm{8}^{\mathrm{7}} \equiv\mathrm{1}\left({mod}\mathrm{49}\right) \\ $$$$\left(\mathrm{8}^{\mathrm{7}} \right)^{\mathrm{288}} \left(\mathrm{8}\right)^{\mathrm{4}} \equiv\left(\mathrm{1}\right)^{\mathrm{288}} \left(\mathrm{1}\right)^{\mathrm{4}} \left({mod}\mathrm{49}\right) \\ $$$$\mathrm{8}^{\mathrm{2020}} \equiv\mathrm{1}\left({mod}\:\mathrm{49}\right).................{B} \\ $$$${A}+{B}: \\ $$$$\mathrm{6}^{\mathrm{2020}} +\mathrm{8}^{\mathrm{2020}} \equiv\mathrm{2}\left({mod}\mathrm{49}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com