Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 121609 by benjo_mathlover last updated on 10/Nov/20

 y(√(x^2 +y^2 )) dx −x(x+(√(x^2 +y^2 ))) dy = 0

yx2+y2dxx(x+x2+y2)dy=0

Answered by liberty last updated on 10/Nov/20

 (dy/dx) = ((y(√(x^2 +y^2 )))/(x(x+(√(x^2 +y^2 )))))  let y = vx ⇒(dy/dx) = v + x (dv/dx)  ⇒ v + x (dv/dx) = ((vx (√(x^2 +v^2 x^2 )))/(x^2 +x(√(x^2 +v^2 x^2 ))))  ⇒v + x (dv/dx) = ((v(√(1+v^2 )))/(1+(√(1+v^2 ))))  ⇒x (dv/dx) = ((v(√(1+v^2 ))−v−v(√(1+v^2 )))/(1+(√(1+v^2 ))))  ⇒ (((1+(√(1+v^2 ))))/v) dv = − (dx/x)  ⇒ ln ∣v∣ + ∫ (((√(1+v^2 )) dv)/v) = −ln ∣x∣ + c   let I = ∫ ((√(1+v^2 ))/v) dv = ∫ ((1+v^2 )/(v(√(1+v^2 )))) dv  I = ∫ (dv/(v(√(1+v^2 )))) + ∫ (v/( (√(1+v^2 )))) dv  I = (1/2)∫ ((d(1+v^2 ))/( (√(1+v^2 ))))+ ∫ ((sec^2 u du)/(tan u. sec u)) [ u=arc tan v ]  I=(√(1+v^2 )) + ∫ csc u du   I= (√(1+v^2 )) + ln ∣ csc u−cot u ∣     ∴ the solution  ln ∣vx∣ + (√(1+v^2 )) + ln ∣(((√(1+v^2 )) −1)/v) ∣ = C  ln ∣x((((√(x^2 +y^2 ))−x)/x))∣+ ((√(x^2 +y^2 ))/x) = C  ln ∣ (√(x^2 +y^2 ))−x∣ + ((√(x^2 +y^2 ))/x) = C

dydx=yx2+y2x(x+x2+y2)lety=vxdydx=v+xdvdxv+xdvdx=vxx2+v2x2x2+xx2+v2x2v+xdvdx=v1+v21+1+v2xdvdx=v1+v2vv1+v21+1+v2(1+1+v2)vdv=dxxlnv+1+v2dvv=lnx+cletI=1+v2vdv=1+v2v1+v2dvI=dvv1+v2+v1+v2dvI=12d(1+v2)1+v2+sec2udutanu.secu[u=arctanv]I=1+v2+cscuduI=1+v2+lncscucotuthesolutionlnvx+1+v2+ln1+v21v=Clnx(x2+y2xx)+x2+y2x=Clnx2+y2x+x2+y2x=C

Answered by TANMAY PANACEA last updated on 10/Nov/20

y(√(x^2 +y^2 )) dx−x(√(x^2 +y^2 )) dy−x^2 dy=0  −(√(x^2 +y^2 )) (xdy−ydx)=x^2 dy  −x×(√(1+((y/x))^2 )) ×(((xdy−ydx)/x^2 ))=dy  −((x/y))(√(1+((y/x))^2 )) ×d((y/x))=(dy/y)  (dy/y)+((x/y))(√(1+((y/x))^2 )) ×d((y/x))=0=dC  (dy/y)+(((√(1+p^2 )) dp)/p)=dC  ★intregation  ∫(dy/y)=lny+C_1   ■∫((√(1+p^2 ))/p)dp →k^2 =1+p^2 →kdk=pdp  ∫((√(1+p^2 ))/p^2 )×pdp→∫((k×kdk)/((k^2 −1)))=∫((k^2 −1+1)/(k^2 −1))dk=∫(1+(1/(k^2 −1))))dk  =k+(1/2)ln(((k−1)/(k+1)))+C_2   =(√(1+p^2 )) +(1/2)ln((((√(1+p^2 )) −1)/( (√(1+p^2 )) +1)))+C_2   lny+(√(1+p^2 )) +(1/2)ln((((√(1+p^2 )) −1)/( (√(1+p^2 )) +1)))=C  lny+(√(1+((y/x))^2 )) +(1/2)ln((((√(1+((y/x))^2 −1)) )/( (√(1+((y/x))^2 )) +1)))=C

yx2+y2dxxx2+y2dyx2dy=0x2+y2(xdyydx)=x2dyx×1+(yx)2×(xdyydxx2)=dy(xy)1+(yx)2×d(yx)=dyydyy+(xy)1+(yx)2×d(yx)=0=dCdyy+1+p2dpp=dCintregationdyy=lny+C11+p2pdpk2=1+p2kdk=pdp1+p2p2×pdpk×kdk(k21)=k21+1k21dk=(1+1k21))dk=k+12ln(k1k+1)+C2=1+p2+12ln(1+p211+p2+1)+C2lny+1+p2+12ln(1+p211+p2+1)=Clny+1+(yx)2+12ln(1+(yx)211+(yx)2+1)=C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com