Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121611 by benjo_mathlover last updated on 10/Nov/20

 ∫_0 ^2  sin (2πx)cos (5πx) dx ?

20sin(2πx)cos(5πx)dx?

Commented by mr W last updated on 10/Nov/20

∫_0 ^2 sin (2πx)cos (5πx)dx  =(1/2)∫_0 ^2 [sin (7πx)−sin (3πx)]dx  =(1/2)[−(1/(7π))cos (7πx)+(1/(3π))cos (3πx)]_0 ^2   =(1/2)[−(1/(7π))(1−1)+(1/(3π))(1−1)]  =0

02sin(2πx)cos(5πx)dx=1202[sin(7πx)sin(3πx)]dx=12[17πcos(7πx)+13πcos(3πx)]02=12[17π(11)+13π(11)]=0

Commented by MJS_new last updated on 10/Nov/20

sin (2π(2−x))=−sin (2πx)  cos (5π(2−x))=cos (5πx)  ⇒ ∫_0 ^2 ...=0

sin(2π(2x))=sin(2πx)cos(5π(2x))=cos(5πx)20...=0

Answered by MJS_new last updated on 10/Nov/20

=0

=0

Commented by benjo_mathlover last updated on 10/Nov/20

super fastest prof

superfastestprof

Terms of Service

Privacy Policy

Contact: info@tinkutara.com