Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 121633 by liberty last updated on 10/Nov/20

Given implicit expression  { ((x=tan α)),((y=tan β)) :}  where x,y,α and β is variable. Prove that   (dy/dx) + ((1+y^2 )/(1+x^2 )) = 0 .

Givenimplicitexpression{x=tanαy=tanβwherex,y,αandβisvariable.Provethatdydx+1+y21+x2=0.

Commented by Dwaipayan Shikari last updated on 10/Nov/20

x=tanα⇒tan^(−1) x=α⇒(1/(1+x^2 ))=(dα/dx)  y=tanβ⇒tan^(−1) y=β⇒(1/(1+y^2 ))=(dβ/dy)  (dy/dx).(dα/dβ)=((1+y^2 )/(1+x^2 ))

x=tanαtan1x=α11+x2=dαdxy=tanβtan1y=β11+y2=dβdydydx.dαdβ=1+y21+x2

Commented by liberty last updated on 10/Nov/20

not proved?

notproved?

Commented by Dwaipayan Shikari last updated on 10/Nov/20

We have to know relation between  α and β

Wehavetoknowrelationbetweenαandβ

Commented by Dwaipayan Shikari last updated on 10/Nov/20

If α+β=0  then  −(dy/dx)=((1+y^2 )/(1+x^2 ))⇒(dy/dx)+((1+y^2 )/(1+x^2 ))=0

Ifα+β=0thendydx=1+y21+x2dydx+1+y21+x2=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com