Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121674 by mnjuly1970 last updated on 10/Nov/20

         ...  advanced  calculus...      prove that :              Ω =∫_0 ^( ∞) ((sin^4 (x)ln(x))/x^2 )dx=(π/4)(1−γ)  γ:euler−mascheroni constant        m.n.july.1970

...advancedcalculus...provethat:Ω=0sin4(x)ln(x)x2dx=π4(1γ)γ:eulermascheroniconstantm.n.july.1970

Answered by mindispower last updated on 11/Nov/20

Ω=∫_0 ^∞ ((sin^4 (x))/x^2 )ln(x)dx  sin^4 (x)=(1/8)(cos(4x)−4cos(2x)+3)  8Ω=∫_0 ^∞ (cos(4x)−4cos(2x)+3).((ln(x)dx)/x^2 )  by part u=cos(4x)−4cos(2x)+3  dv=((ln(x))/x^2 ),v=−((ln(x))/x)−(1/x)  8Ω=[−(((ln(x)+1))/x)(cos(4x)−4cos(2x)+3)]_0 ^∞   +∫_0 ^∞ (((ln(x)+1))/x)(−4sin(4x)+8sin(2x))dx  8Ω=−4∫_0 ^∞ ((ln(x)+1)/x)(sin(4x)−2sin(2x))dx  ⇔−2Ω={∫_0 ^∞ ((ln(x))/x)sin(4x)−2∫((ln(x))/x)sin(2x)}_(=W)   +{∫_0 ^∞ ((sin(4x))/x)−2∫_0 ^∞ ((sin(2x))/x)dx}_(=V)   a>0,∫_0 ^∞ ((sin(ax))/x)dx=∫_0 ^∞ ((sin(ax))/(ax))d(ax)=(π/2)  V=(π/2)−2.(π/2)=−(π/2)  ∫_0 ^∞ ((sin(ax))/x)ln(x)=f(a)=(∂/∂t)∫_0 ^∞ sin(ax)x^(t−1) dx∣_(t=0)   f(t)=∫_0 ^∞ sin(ax)x^(t−1) dx=Im∫_0 ^∞ e^(iax) x^(t−1) dx  iax=−z⇔Im∫_0 ^(i∞) e^(−z) .(((iz)/a))^t .(a/z).(dz/a)  =Ima∫_0 ^(i∞) e^(i(π/2)t) ((z/a))^(t−1) e^(−z) dz  =Im−(e^(i(π/2)t) /a^t )∫_0 ^∞ z^(t−1) e^(−z) dz  =−((sin(((πt)/2))Γ(t))/a^t )=((−sin(((πt)/2))π)/(a^t Γ(1−t)sin(((πt)/2))))=−(π/(2cos((π/2)t)Γ(1−t)a^t ))  f′(t)∣_(t=0) =(π/2)(−γ−ln(a)))=−(π/2)(γ+ln(a))  W=f(4)−2f(2)=−(π/2)(γ+ln(4))−2(−(π/2)(γ+ln(2))  =(π/2)γ  −2Ω=W+V=(π/2)γ−(π/2)⇒Ω=−((πγ)/4)+(π/4)=(π/4)(1−γ)

Ω=0sin4(x)x2ln(x)dxsin4(x)=18(cos(4x)4cos(2x)+3)8Ω=0(cos(4x)4cos(2x)+3).ln(x)dxx2bypartu=cos(4x)4cos(2x)+3dv=ln(x)x2,v=ln(x)x1x8Ω=[(ln(x)+1)x(cos(4x)4cos(2x)+3)]0+0(ln(x)+1)x(4sin(4x)+8sin(2x))dx8Ω=40ln(x)+1x(sin(4x)2sin(2x))dx2Ω={0ln(x)xsin(4x)2ln(x)xsin(2x)}=W+{0sin(4x)x20sin(2x)xdx}=Va>0,0sin(ax)xdx=0sin(ax)axd(ax)=π2V=π22.π2=π20sin(ax)xln(x)=f(a)=t0sin(ax)xt1dxt=0f(t)=0sin(ax)xt1dx=Im0eiaxxt1dxiax=zIm0iez.(iza)t.az.dza=Ima0ieiπ2t(za)t1ezdz=Imeiπ2tat0zt1ezdz=sin(πt2)Γ(t)at=sin(πt2)πatΓ(1t)sin(πt2)=π2cos(π2t)Γ(1t)atf(t)t=0=π2(γln(a)))=π2(γ+ln(a))W=f(4)2f(2)=π2(γ+ln(4))2(π2(γ+ln(2))=π2γ2Ω=W+V=π2γπ2Ω=πγ4+π4=π4(1γ)

Commented by mnjuly1970 last updated on 11/Nov/20

peace be upon you  mr power .thank you.

peacebeuponyoumrpower.thankyou.

Commented by mindispower last updated on 11/Nov/20

withe pleasur sir

withepleasursir

Answered by mnjuly1970 last updated on 11/Nov/20

Answered by mnjuly1970 last updated on 11/Nov/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com