Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121680 by aristarque last updated on 10/Nov/20

please evaluate ∫x^x dx

$${please}\:{evaluate}\:\int{x}^{{x}} {dx} \\ $$

Answered by Dwaipayan Shikari last updated on 11/Nov/20

∫e^(xlogx) dx  =∫Σ_(n=0) ^∞ (((xlogx)^n )/(n!))dx  =Σ_(n=0) ^∞ ∫(((xlogx)^n )/(n!))dx  =Σ_(n=0) ^∞ (1/(n!))∫x^n log^n x dx         x=e^(−t)   =Σ_(n=0) ^∞ (1/(n!))(−1)^(n+1) ∫e^(−(n+1)t) (t)^n dt  =Σ_(n=0) ^∞ (1/(n!))(−1)^(n+1) ∫e^(−u) (u^n /((n+1)^n ))du        (n+1)t=u  =Σ_(n=0) ^∞ (1/(n!)).(((−1)^(n+1) )/((n+1)^n ))∫e^(−u) u^n du  =Σ_(n=0) ^∞ (1/(n!)).(((−1)^(n+1) )/((n+1)^n ))∫(Σ_(r=0) ^∞ (((−u)^r )/(r!)).u^n )du   =Σ_(n=0) ^∞ (((−1)^(n+1+r) )/(n!(n+1)^n ))Σ_(r=0) ^∞ (u^(r+n+1) /(r!(r+n+1)))    If it was ∫_0 ^1 x^x dx then  Σ_(n=0) ^∞ (1/(n!)).(((−1)^(n+2) )/((n+1)^(n+1) ))∫_0 ^∞ e^(−u) u^n du  Σ_(n=0) ^∞ (((−1)^n )/((n+1)^((n+1)) )) ((Γ(n+1))/(n!))=Σ_(n=0) ^∞ (((−1)^n )/((n+1)^((n+1)) ))

$$\int{e}^{{xlogx}} {dx} \\ $$$$=\int\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left({xlogx}\right)^{{n}} }{{n}!}{dx} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\int\frac{\left({xlogx}\right)^{{n}} }{{n}!}{dx} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\int{x}^{{n}} {log}^{{n}} {x}\:{dx}\:\:\:\:\:\:\:\:\:{x}={e}^{−{t}} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \int{e}^{−\left({n}+\mathrm{1}\right){t}} \left({t}\right)^{{n}} {dt} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} \int{e}^{−{u}} \frac{{u}^{{n}} }{\left({n}+\mathrm{1}\right)^{{n}} }{du}\:\:\:\:\:\:\:\:\left({n}+\mathrm{1}\right){t}={u} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}.\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)^{{n}} }\int{e}^{−{u}} {u}^{{n}} {du} \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}.\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}} }{\left({n}+\mathrm{1}\right)^{{n}} }\int\left(\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−{u}\right)^{{r}} }{{r}!}.{u}^{{n}} \right){du}\: \\ $$$$=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{1}+{r}} }{{n}!\left({n}+\mathrm{1}\right)^{{n}} }\underset{{r}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{u}^{{r}+{n}+\mathrm{1}} }{{r}!\left({r}+{n}+\mathrm{1}\right)} \\ $$$$ \\ $$$${If}\:{it}\:{was}\:\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{x}} {dx}\:{then} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}!}.\frac{\left(−\mathrm{1}\right)^{{n}+\mathrm{2}} }{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} }\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {u}^{{n}} {du} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{\left({n}+\mathrm{1}\right)} }\:\frac{\Gamma\left({n}+\mathrm{1}\right)}{{n}!}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left({n}+\mathrm{1}\right)^{\left({n}+\mathrm{1}\right)} } \\ $$

Commented by aristarque last updated on 11/Nov/20

please evaluate ∫x^x dx  thanks very much sir

$${please}\:{evaluate}\:\int{x}^{{x}} {dx} \\ $$$${thanks}\:{very}\:{much}\:{sir} \\ $$

Commented by Dwaipayan Shikari last updated on 11/Nov/20

I have edited the answer. kindly go through it

$${I}\:{have}\:{edited}\:{the}\:{answer}.\:{kindly}\:{go}\:{through}\:{it} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com