Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 121693 by mathace last updated on 11/Nov/20

Commented by prakash jain last updated on 12/Nov/20

$$ \\ $$

Commented by mindispower last updated on 11/Nov/20

nice sir

$${nice}\:{sir} \\ $$

Answered by mindispower last updated on 11/Nov/20

indication  1⇒a^3 −b^3 =9(a−b)  2⇒b^3 −c^3 =52(b−c)  3⇔c^3 −a^3 =49(c−a)  1+2+3⇒0=−40a+43b−3c

$${indication} \\ $$$$\mathrm{1}\Rightarrow{a}^{\mathrm{3}} −{b}^{\mathrm{3}} =\mathrm{9}\left({a}−{b}\right) \\ $$$$\mathrm{2}\Rightarrow{b}^{\mathrm{3}} −{c}^{\mathrm{3}} =\mathrm{52}\left({b}−{c}\right) \\ $$$$\mathrm{3}\Leftrightarrow{c}^{\mathrm{3}} −{a}^{\mathrm{3}} =\mathrm{49}\left({c}−{a}\right) \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{3}\Rightarrow\mathrm{0}=−\mathrm{40}{a}+\mathrm{43}{b}−\mathrm{3}{c} \\ $$

Answered by mathace last updated on 12/Nov/20

  The system of equation is  a^2 +ab+b^2 =9                                    (1)  b^2 +bc+c^2 =52                                   (2)  c^2 +ac+a^2 =49                                  (3)  The system implies to  a^2 +b^2 −((√9))^2 =−ab      as a triangle where  ((a^2 +b^2 −((√9))^2 )/(2ab))=−(1/2)=cos (120°)        (4)  similarly,  ((b^2 +c^2 −((√(52)))^2 )/(2bc)) =−(1/2)=cos (120°)     (5)  ((c^2 +a^2 −((√(49)))^2 )/(2ca))=−(1/2)=cos (120°)      (6)    sum of area of three triangles  △OAB,△OBC,△OCA is  (1/2)(ab+bc+ca)sin (120°)  From the whole triangle △ABC we have,  cos (θ)=((7^2 +3^2 −((√(52)))^2 )/(2×7×3))=(1/7)  implies,  sin (θ)=±((√(48))/7)                             (7)  Considering the positve value of sin (θ) we find  the area of the whole triangle △ABC  is  (1/2)×7×3×sin (θ)=(1/2)×7×3×((√(48))/7)=(3/2)(√(48))  As sum of tringles △OAB, △OBC, △OCA is equal to the  area of the whole triangle△ABC, thus we have  (1/2)(ab+bc+ca)sin (120°)=(3/2)(√(48))  or,  ab+bc+ca=24  Now, (1)+(2)+(3) implies  2(a^2 +b^2 +c^2 )+(ab+bc+ca)=9+52+49=110  2(a^2 +b^2 +c^2 )=110−24=86  a^2 +b^2 +c^2 =43  We know,  (a+b+c)^2 =(a^2 +b^2 +c^2 )+2(ab+bc+ca)  (a+b+c)^2 =43+48=91  a+b+c=±(√(91))  Now Applying the oprations  (2)−(1),  (2)−(3) and (3)−(1) we have,  (c−a)(a+b+c)=43                                   (8)  (b−a)(a+b+c)=3                                      (9)  (c−b)(a+b+c)=40                                   (10)  Hence, our quadratic system has been   transformed into equivalent linear system.  Thus we have,  c−a=±((43)/( (√(91))))  b−a=±(3/( (√(91))))  c−b=±((40)/( (√(91))))  a+b+c=±(√(91))  Solving the system we have,  a=±((15)/( (√(91))))  b=±((18)/( (√(91))))  c=±((58)/( (√(91))))  Again from equation (7), we have   sin (θ)=−((√(48))/7) [Taking(−ve)value]   Now the area of the whole triangle △ABC  is  (1/2)×7×3×sin (θ)=(1/2)×7×3×(−((√(48))/7))=−(3/2)(√(48))  As sum of tringles △OAB, △OBC, △OCA is equal to the  area of the whole triangle△ABC, thus we have  (1/2)(ab+bc+ca)sin (120°)=−(3/2)(√(48))  or,  ab+bc+ca=−24  Now, (1)+(2)+(3) implies  2(a^2 +b^2 +c^2 )+(ab+bc+ca)=9+52+49=110  2(a^2 +b^2 +c^2 )=110+24=134  a^2 +b^2 +c^2 =67  We know,  (a+b+c)^2 =(a^2 +b^2 +c^2 )+2(ab+bc+ca)  (a+b+c)^2 =67−48=19  a+b+c=±(√(19))  Now recalling the equation (8),(9),(10) we have  (c−a)(a+b+c)=43  (b−a)(a+b+c)=3  (c−b)(a+b+c)=40  Hence, our quadratic system has been   transformed again into equivalent linear system.  Thus we have,  c−a=±((43)/( (√(19))))  b−a=±(3/( (√(19))))  c−b=±((40)/( (√(19))))  a+b+c=±(√(19))  Solving the system we have,  a=∓(9/( (√(19))))  b=∓(6/( (√(19))))  c=±((34)/( (√(19))))   Therefore our obtained solution set   S={(a,b,c):(((15)/( (√(91)))),((18)/( (√(91)))),((58)/( (√(91))))),(((−15)/( (√(91)))),((−18)/( (√(91)))),((−58)/( (√(91))))),(((−9)/( (√(19)))),((−6)/( (√(19)))),((34)/( (√(19))))),((9/( (√(19)))),(6/( (√(19)))),((−34)/( (√(19)))))}                                            [Omar bin Abdul Aziz]

$$ \\ $$$${The}\:{system}\:{of}\:{equation}\:{is} \\ $$$${a}^{\mathrm{2}} +{ab}+{b}^{\mathrm{2}} =\mathrm{9}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$${b}^{\mathrm{2}} +{bc}+{c}^{\mathrm{2}} =\mathrm{52}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$${c}^{\mathrm{2}} +{ac}+{a}^{\mathrm{2}} =\mathrm{49}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{3}\right) \\ $$$${The}\:{system}\:{implies}\:{to} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\left(\sqrt{\mathrm{9}}\right)^{\mathrm{2}} =−{ab}\:\:\:\:\:\:{as}\:{a}\:{triangle}\:{where} \\ $$$$\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −\left(\sqrt{\mathrm{9}}\right)^{\mathrm{2}} }{\mathrm{2}{ab}}=−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{cos}\:\left(\mathrm{120}°\right)\:\:\:\:\:\:\:\:\left(\mathrm{4}\right) \\ $$$${similarly}, \\ $$$$\frac{{b}^{\mathrm{2}} +{c}^{\mathrm{2}} −\left(\sqrt{\mathrm{52}}\right)^{\mathrm{2}} }{\mathrm{2}{bc}}\:=−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{cos}\:\left(\mathrm{120}°\right)\:\:\:\:\:\left(\mathrm{5}\right) \\ $$$$\frac{{c}^{\mathrm{2}} +{a}^{\mathrm{2}} −\left(\sqrt{\mathrm{49}}\right)^{\mathrm{2}} }{\mathrm{2}{ca}}=−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{cos}\:\left(\mathrm{120}°\right)\:\:\:\:\:\:\left(\mathrm{6}\right) \\ $$$$ \\ $$$${sum}\:{of}\:{area}\:{of}\:{three}\:{triangles}\:\:\bigtriangleup{OAB},\bigtriangleup{OBC},\bigtriangleup{OCA}\:{is} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({ab}+{bc}+{ca}\right)\mathrm{sin}\:\left(\mathrm{120}°\right) \\ $$$${From}\:{the}\:{whole}\:{triangle}\:\bigtriangleup{ABC}\:{we}\:{have}, \\ $$$$\mathrm{cos}\:\left(\theta\right)=\frac{\mathrm{7}^{\mathrm{2}} +\mathrm{3}^{\mathrm{2}} −\left(\sqrt{\mathrm{52}}\right)^{\mathrm{2}} }{\mathrm{2}×\mathrm{7}×\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{7}} \\ $$$${implies},\:\:\mathrm{sin}\:\left(\theta\right)=\pm\frac{\sqrt{\mathrm{48}}}{\mathrm{7}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{7}\right) \\ $$$${Considering}\:{the}\:{positve}\:{value}\:{of}\:\mathrm{sin}\:\left(\theta\right)\:{we}\:{find} \\ $$$${the}\:{area}\:{of}\:{the}\:{whole}\:{triangle}\:\bigtriangleup{ABC}\:\:{is} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{7}×\mathrm{3}×\mathrm{sin}\:\left(\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{7}×\mathrm{3}×\frac{\sqrt{\mathrm{48}}}{\mathrm{7}}=\frac{\mathrm{3}}{\mathrm{2}}\sqrt{\mathrm{48}} \\ $$$${As}\:{sum}\:{of}\:{tringles}\:\bigtriangleup{OAB},\:\bigtriangleup{OBC},\:\bigtriangleup{OCA}\:{is}\:{equal}\:{to}\:{the} \\ $$$${area}\:{of}\:{the}\:{whole}\:{triangle}\bigtriangleup{ABC},\:{thus}\:{we}\:{have} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({ab}+{bc}+{ca}\right)\mathrm{sin}\:\left(\mathrm{120}°\right)=\frac{\mathrm{3}}{\mathrm{2}}\sqrt{\mathrm{48}}\:\:{or}, \\ $$$${ab}+{bc}+{ca}=\mathrm{24} \\ $$$${Now},\:\left(\mathrm{1}\right)+\left(\mathrm{2}\right)+\left(\mathrm{3}\right)\:{implies} \\ $$$$\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+\left({ab}+{bc}+{ca}\right)=\mathrm{9}+\mathrm{52}+\mathrm{49}=\mathrm{110} \\ $$$$\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)=\mathrm{110}−\mathrm{24}=\mathrm{86} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{43} \\ $$$${We}\:{know}, \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} =\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+\mathrm{2}\left({ab}+{bc}+{ca}\right) \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} =\mathrm{43}+\mathrm{48}=\mathrm{91} \\ $$$${a}+{b}+{c}=\pm\sqrt{\mathrm{91}} \\ $$$${Now}\:{Applying}\:{the}\:{oprations}\:\:\left(\mathrm{2}\right)−\left(\mathrm{1}\right), \\ $$$$\left(\mathrm{2}\right)−\left(\mathrm{3}\right)\:{and}\:\left(\mathrm{3}\right)−\left(\mathrm{1}\right)\:{we}\:{have}, \\ $$$$\left({c}−{a}\right)\left({a}+{b}+{c}\right)=\mathrm{43}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{8}\right) \\ $$$$\left({b}−{a}\right)\left({a}+{b}+{c}\right)=\mathrm{3}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{9}\right) \\ $$$$\left({c}−{b}\right)\left({a}+{b}+{c}\right)=\mathrm{40}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left(\mathrm{10}\right) \\ $$$${Hence},\:{our}\:{quadratic}\:{system}\:{has}\:{been}\: \\ $$$${transformed}\:{into}\:{equivalent}\:{linear}\:{system}. \\ $$$${Thus}\:{we}\:{have}, \\ $$$${c}−{a}=\pm\frac{\mathrm{43}}{\:\sqrt{\mathrm{91}}} \\ $$$${b}−{a}=\pm\frac{\mathrm{3}}{\:\sqrt{\mathrm{91}}} \\ $$$${c}−{b}=\pm\frac{\mathrm{40}}{\:\sqrt{\mathrm{91}}} \\ $$$${a}+{b}+{c}=\pm\sqrt{\mathrm{91}} \\ $$$${Solving}\:{the}\:{system}\:{we}\:{have}, \\ $$$${a}=\pm\frac{\mathrm{15}}{\:\sqrt{\mathrm{91}}} \\ $$$${b}=\pm\frac{\mathrm{18}}{\:\sqrt{\mathrm{91}}} \\ $$$${c}=\pm\frac{\mathrm{58}}{\:\sqrt{\mathrm{91}}} \\ $$$${Again}\:{from}\:{equation}\:\left(\mathrm{7}\right),\:{we}\:{have} \\ $$$$\:\mathrm{sin}\:\left(\theta\right)=−\frac{\sqrt{\mathrm{48}}}{\mathrm{7}}\:\left[{Taking}\left(−{ve}\right){value}\right]\: \\ $$$${Now}\:{the}\:{area}\:{of}\:{the}\:{whole}\:{triangle}\:\bigtriangleup{ABC}\:\:{is} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{7}×\mathrm{3}×\mathrm{sin}\:\left(\theta\right)=\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{7}×\mathrm{3}×\left(−\frac{\sqrt{\mathrm{48}}}{\mathrm{7}}\right)=−\frac{\mathrm{3}}{\mathrm{2}}\sqrt{\mathrm{48}} \\ $$$${As}\:{sum}\:{of}\:{tringles}\:\bigtriangleup{OAB},\:\bigtriangleup{OBC},\:\bigtriangleup{OCA}\:{is}\:{equal}\:{to}\:{the} \\ $$$${area}\:{of}\:{the}\:{whole}\:{triangle}\bigtriangleup{ABC},\:{thus}\:{we}\:{have} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left({ab}+{bc}+{ca}\right)\mathrm{sin}\:\left(\mathrm{120}°\right)=−\frac{\mathrm{3}}{\mathrm{2}}\sqrt{\mathrm{48}}\:\:{or}, \\ $$$${ab}+{bc}+{ca}=−\mathrm{24} \\ $$$${Now},\:\left(\mathrm{1}\right)+\left(\mathrm{2}\right)+\left(\mathrm{3}\right)\:{implies} \\ $$$$\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+\left({ab}+{bc}+{ca}\right)=\mathrm{9}+\mathrm{52}+\mathrm{49}=\mathrm{110} \\ $$$$\mathrm{2}\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)=\mathrm{110}+\mathrm{24}=\mathrm{134} \\ $$$${a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} =\mathrm{67} \\ $$$${We}\:{know}, \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} =\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} \right)+\mathrm{2}\left({ab}+{bc}+{ca}\right) \\ $$$$\left({a}+{b}+{c}\right)^{\mathrm{2}} =\mathrm{67}−\mathrm{48}=\mathrm{19} \\ $$$${a}+{b}+{c}=\pm\sqrt{\mathrm{19}} \\ $$$${Now}\:{recalling}\:{the}\:{equation}\:\left(\mathrm{8}\right),\left(\mathrm{9}\right),\left(\mathrm{10}\right)\:{we}\:{have} \\ $$$$\left({c}−{a}\right)\left({a}+{b}+{c}\right)=\mathrm{43} \\ $$$$\left({b}−{a}\right)\left({a}+{b}+{c}\right)=\mathrm{3} \\ $$$$\left({c}−{b}\right)\left({a}+{b}+{c}\right)=\mathrm{40} \\ $$$${Hence},\:{our}\:{quadratic}\:{system}\:{has}\:{been}\: \\ $$$${transformed}\:{again}\:{into}\:{equivalent}\:{linear}\:{system}. \\ $$$${Thus}\:{we}\:{have}, \\ $$$${c}−{a}=\pm\frac{\mathrm{43}}{\:\sqrt{\mathrm{19}}} \\ $$$${b}−{a}=\pm\frac{\mathrm{3}}{\:\sqrt{\mathrm{19}}} \\ $$$${c}−{b}=\pm\frac{\mathrm{40}}{\:\sqrt{\mathrm{19}}} \\ $$$${a}+{b}+{c}=\pm\sqrt{\mathrm{19}} \\ $$$${Solving}\:{the}\:{system}\:{we}\:{have}, \\ $$$${a}=\mp\frac{\mathrm{9}}{\:\sqrt{\mathrm{19}}} \\ $$$${b}=\mp\frac{\mathrm{6}}{\:\sqrt{\mathrm{19}}} \\ $$$${c}=\pm\frac{\mathrm{34}}{\:\sqrt{\mathrm{19}}} \\ $$$$\:{Therefore}\:{our}\:{obtained}\:{solution}\:{set}\: \\ $$$${S}=\left\{\left({a},{b},{c}\right):\left(\frac{\mathrm{15}}{\:\sqrt{\mathrm{91}}},\frac{\mathrm{18}}{\:\sqrt{\mathrm{91}}},\frac{\mathrm{58}}{\:\sqrt{\mathrm{91}}}\right),\left(\frac{−\mathrm{15}}{\:\sqrt{\mathrm{91}}},\frac{−\mathrm{18}}{\:\sqrt{\mathrm{91}}},\frac{−\mathrm{58}}{\:\sqrt{\mathrm{91}}}\right),\left(\frac{−\mathrm{9}}{\:\sqrt{\mathrm{19}}},\frac{−\mathrm{6}}{\:\sqrt{\mathrm{19}}},\frac{\mathrm{34}}{\:\sqrt{\mathrm{19}}}\right),\left(\frac{\mathrm{9}}{\:\sqrt{\mathrm{19}}},\frac{\mathrm{6}}{\:\sqrt{\mathrm{19}}},\frac{−\mathrm{34}}{\:\sqrt{\mathrm{19}}}\right)\right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\left[{Omar}\:{bin}\:{Abdul}\:{Aziz}\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com