All Questions Topic List
Number Theory Questions
Previous in All Question Next in All Question
Previous in Number Theory Next in Number Theory
Question Number 121694 by bemath last updated on 11/Nov/20
Evaluate∑nk=14k+4k2−12k−1+2k+1?
Answered by liberty last updated on 11/Nov/20
let2k−1=aand2k+1=b⇒a2+b2=4k∧ab=4k2−1⇒4k+4k2−12k−1+2k+1=a2+b2+aba+b⇒a3−b3a−ba+b=a3−b3a2−b2=a3−b3−2=b3−a32.sincea2−b2=(2k−1)−(2k+1)=−2⇒4k+4k2−12k−1+2k+1=(2k+1)3−(2k−1)32then∑nk=14k+4k2−12k−1+2k+1=∑nk=1(2k+1)3−(2k−1)32=(2n+1)3−12.[telescopingseries]
Terms of Service
Privacy Policy
Contact: info@tinkutara.com