Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 121754 by bemath last updated on 11/Nov/20

Answered by liberty last updated on 11/Nov/20

let y = (2020!)^2   ⇒ln y = 2(ln 2020+ln 2019+ln 2018+...+ln 1)  let x = 2020^(2020)   ⇒ln x = 2020 ln (2020)     consider ln x−ln y = 2020ln (2020)−2(ln 2020+ln 2019+...+ln 1)  ln x−ln y = 2018.ln 2020−2ln (2019!)>0  so ln x > ln y ⇒ x > y

lety=(2020!)2lny=2(ln2020+ln2019+ln2018+...+ln1)letx=20202020lnx=2020ln(2020)considerlnxlny=2020ln(2020)2(ln2020+ln2019+...+ln1)lnxlny=2018.ln20202ln(2019!)>0solnx>lnyx>y

Commented by MJS_new last updated on 11/Nov/20

(1!)^2 =1    ^     1^1 =1  (2!)^2 =4         2^2 =4  (3!)^2 =36       3^3 =27  (4!)^2 =576  ^   4^4 =256  ...  (n!)^2 ≥n^n  ∀n∈N^★     using Stirling′s Approximation  lim_(n→∞) (n!− (n^n /e^n )(√(2πn))) =0 and n!>(n^n /e^n )(√(2πn))  (n!)^2 <>n^n   (n^(2n) /e^(2n) )2πn<>n^n   n^(2n) 2πn<>n^n e^(2n)   both sides >0  2nln n +ln n +ln 2π <> nln n +2n  (n+1)ln n <> 2n−ln 2π  ln n <> 2−((2+ln 2π)/(n+1))  obviously ln n > 2 ∀ n>e^2   [ln n = 2−((2+ln 2π)/(n+1)) ⇒ n≈2.34940]    2020>e^2  ⇒ (2020!)^2 >((2020^(4040) )/e^(4040) )4040π>2020^(2020)

(1!)2=111=1(2!)2=422=4(3!)2=3633=27(4!)2=57644=256...(n!)2nnnNusingStirlingsApproximationlimn(n!nnen2πn)=0andn!>nnen2πn(n!)2<>nnn2ne2n2πn<>nnn2n2πn<>nne2nbothsides>02nlnn+lnn+ln2π<>nlnn+2n(n+1)lnn<>2nln2πlnn<>22+ln2πn+1obviouslylnn>2n>e2[lnn=22+ln2πn+1n2.34940]2020>e2(2020!)2>20204040e40404040π>20202020

Answered by TANMAY PANACEA last updated on 11/Nov/20

(n!)^2 =A   B=n^n   n!=n(n−1)(n−2)(n−3)..(n−r+1)..3×2×1⇚r_(th) term=(n−r+1)=T_r   n!=1×2×3×...×r×(n−2)(n−1)n⇚ r_(th) term=r=t_r   (n!)^2 =(n×1)×{(n−1)×2}{(n−2)×3...{(n−r+1)r}...{2×(n−1)}{1×n}   now look r_(th)  term of (n!)^2  is (n−r+1)r  value of (T_r t_r −n) is  T_r t_r −n  (n−r+1)r−n  =nr−r^2 +r−n  =r(n−r)−1(n−r)  =(n−r)(r−1) is greater than zero when  n>r>1  so T_r t_r >n  T_1 t_1 >n  T_2 t_2 >n  T_3 t_3 >n  ...  ....  T_n t_n >n  multiply both side  (T_1 t_1 )(T_2 t_2 )...(T_n t_n )>n^n   (n!)^2 >n^n   so (2020!)^2 >(2020)^(2020)

(n!)2=AB=nnn!=n(n1)(n2)(n3)..(nr+1)..3×2×1rthterm=(nr+1)=Trn!=1×2×3×...×r×(n2)(n1)nrthterm=r=tr(n!)2=(n×1)×{(n1)×2}{(n2)×3...{(nr+1)r}...{2×(n1)}{1×n}nowlookrthtermof(n!)2is(nr+1)rvalueof(Trtrn)isTrtrn(nr+1)rn=nrr2+rn=r(nr)1(nr)=(nr)(r1)isgreaterthanzerowhenn>r>1soTrtr>nT1t1>nT2t2>nT3t3>n.......Tntn>nmultiplybothside(T1t1)(T2t2)...(Tntn)>nn(n!)2>nnso(2020!)2>(2020)2020

Terms of Service

Privacy Policy

Contact: info@tinkutara.com