Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 121813 by bemath last updated on 12/Nov/20

  lim_(θ→0)  ((sin θ−θ cos θ)/(sin θ−θ)) =?

limθ0sinθθcosθsinθθ=?

Answered by bobhans last updated on 12/Nov/20

  lim_(θ→0)  ((sin θ−θ cos θ)/(sin θ−θ)) =    lim_(θ→0)  ((θ−(θ^3 /6)−θ(1−(θ^2 /2)))/(θ−(θ^3 /6)−θ)) =   lim_(θ→0)  (((((2θ^3 )/6)))/(−((θ^3 /6)))) = −2.

limθ0sinθθcosθsinθθ=limθ0θθ36θ(1θ22)θθ36θ=limθ0(2θ36)(θ36)=2.

Answered by liberty last updated on 12/Nov/20

 lim_(θ→0)  ((cos θ−(cos θ−θ sin θ))/(cos θ−1)) =   lim_(θ→0)  ((θ sin θ)/(−2sin^2 (θ/2))) = (1/(−2((1/4)))) = −2.▲

limθ0cosθ(cosθθsinθ)cosθ1=limθ0θsinθ2sin2(θ/2)=12(14)=2.

Answered by Dwaipayan Shikari last updated on 12/Nov/20

lim_(x→0) ((x−(x^3 /(3!))−x+(x^3 /(2!)))/(x−(x^3 /6)−x))=lim_(x→0) ((x^3 /3)/(−(x^3 /6)))=−2

limx0xx33!x+x32!xx36x=limx0x33x36=2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com