Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 121817 by shaker last updated on 12/Nov/20

Answered by liberty last updated on 12/Nov/20

 lim_(x→1)  (((nx^m −n−mx^n +m)/(x^(m+n) −x^n −x^m +1)) ) =    lim_(x→1)  (((mn(x^(m−1) −x^(n−1) ))/((m+n)x^(m+n−1) −nx^(n−1) −mx^(m−1) )))=  lim_(x→1) (((mn((m−1)x^(m−2) −(n−1)x^(n−2) ))/((m+n)(m+n−1)x^(m+n−2) −n(n−1)x^(n−2) −m(m−1)x^(m−2) )) )=     ((mn(m−n))/(m^2 +2mn+n^2 −m−n−n^2 +n−m^2 +m))  = ((mn(m−n))/(2mn)) = ((m−n)/2). ▲

limx1(nxmnmxn+mxm+nxnxm+1)=limx1(mn(xm1xn1)(m+n)xm+n1nxn1mxm1)=limx1(mn((m1)xm2(n1)xn2)(m+n)(m+n1)xm+n2n(n1)xn2m(m1)xm2)=mn(mn)m2+2mn+n2mnn2+nm2+m=mn(mn)2mn=mn2.

Answered by bemath last updated on 12/Nov/20

let x = 1+ w ; w→0   lim_(w→0)  ((n/((1+w)^n −1)) − (m/((1+w)^m −1)))  = lim_(w→0) ((n/(nw+((n(n−1))/2)w^2 )) − (m/(mw+((m(m−1))/2)w^2 )))  = lim_(w→0) (((2n)/(2nw+n(n−1)w^2 )) − ((2m)/(2mw+m(m−1)w^2 )))  = lim_(w→0) (((2n(2mw+m(m−1)w^2 )−2m(2nw+n(n−1)w^2 ))/((2nw+n(n−1)w^2 )(2mw+m(m−1)w^2 ))))  = lim_(w→0) (((4mn+2mn(m−1)w−4mn−2mn(n−1)w)/((2n+n(n−1)w)(2mw+m(m−1)w^2 ))))  = lim_(w→0) ((((2mn(m−1)−2mn(n−1))w)/((2n+n(n−1)w)(2m+m(m−1)w)w)))  = lim_(w→0) (((2mn(m−1−n+1))/((2n+n(n−1)w)(2m+m(m−1)w)))  = lim_(w→0) (((2mn.(m−n))/(2n.2m))) = ((m−n)/2)

letx=1+w;w0limw0(n(1+w)n1m(1+w)m1)=limw0(nnw+n(n1)2w2mmw+m(m1)2w2)=limw0(2n2nw+n(n1)w22m2mw+m(m1)w2)=limw0(2n(2mw+m(m1)w2)2m(2nw+n(n1)w2)(2nw+n(n1)w2)(2mw+m(m1)w2))=limw0(4mn+2mn(m1)w4mn2mn(n1)w(2n+n(n1)w)(2mw+m(m1)w2))=limw0((2mn(m1)2mn(n1))w(2n+n(n1)w)(2m+m(m1)w)w)=limw0(2mn(m1n+1)(2n+n(n1)w)(2m+m(m1)w)=limw0(2mn.(mn)2n.2m)=mn2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com