Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 121869 by mnjuly1970 last updated on 12/Nov/20

         ... advanced  calculus...      evaluate ::                            I=^(???) ∫_0 ^( (π/2)) (((ln(tan(x)))/(sin(x)−cos(x))))^2 dx                         .m.n.

$$\:\:\:\:\:\:\:\:\:...\:{advanced}\:\:{calculus}... \\ $$$$\:\:\:\:{evaluate}\::: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{I}\overset{???} {=}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} \left(\frac{{ln}\left({tan}\left({x}\right)\right)}{{sin}\left({x}\right)−{cos}\left({x}\right)}\right)^{\mathrm{2}} {dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.{m}.{n}. \\ $$

Answered by mindispower last updated on 12/Nov/20

problem in π/4 or Pv..?

$${problem}\:{in}\:\pi/\mathrm{4}\:{or}\:{Pv}..? \\ $$

Commented by mnjuly1970 last updated on 13/Nov/20

0 to  (π/2) is correct...

$$\mathrm{0}\:{to}\:\:\frac{\pi}{\mathrm{2}}\:{is}\:{correct}... \\ $$

Answered by mindispower last updated on 13/Nov/20

(sin(x)−cos(x))^2 =(((tg(x)−1)^2 )/(1+tg^2 (x)))  I=∫_0 ^(π/2) ((ln^2 (tg(x)))/((tg(x)−1)^2 ))dtg(x)  tg(x)=t⇒I=∫_0 ^∞ ((ln^2 (r))/((r−1)^2 ))dr  =∫_0 ^1 (((ln^2 (r))/((r−1)^2 )).dr+((ln^2 ((1/r)))/(((1/r)−1)^2 )).(dr/r^2 ))  ∫_0 ^1 ((ln^2 (r)dr)/((r−1)^2 ))..IBP⇒  lim_(t→0) [((−ln^2 (r))/(r−1))]_t ^1 +2∫_t ^1 ((ln(r))/(r(r−1)))dr  =lim_(t→0) ((ln^2 (t))/(t−1))+2∫_t ^1 ((ln(r))/(r−1))dr−2∫_t ^1 ((ln(r))/r)dr  =lim_(t→0) ((ln^2 (t))/(t−1))−2∫_0 ^(1−t) ((ln(1−r))/r)dr+ln^2 (t)   =lim_(t→0) [(((ln^2 (t))/(t−1))+ln^2 (t))+2Li_2 (1−t)]  =lim_(t→0) [((tln^2 (t))/(t−1))]+2Li_2 (1)  cause Li_2 is continus  =2Li_2 (1)=2.(π^2 /6)=(π^2 /3)

$$\left({sin}\left({x}\right)−{cos}\left({x}\right)\right)^{\mathrm{2}} =\frac{\left({tg}\left({x}\right)−\mathrm{1}\right)^{\mathrm{2}} }{\mathrm{1}+{tg}^{\mathrm{2}} \left({x}\right)} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{ln}^{\mathrm{2}} \left({tg}\left({x}\right)\right)}{\left({tg}\left({x}\right)−\mathrm{1}\right)^{\mathrm{2}} }{dtg}\left({x}\right) \\ $$$${tg}\left({x}\right)={t}\Rightarrow{I}=\int_{\mathrm{0}} ^{\infty} \frac{{ln}^{\mathrm{2}} \left({r}\right)}{\left({r}−\mathrm{1}\right)^{\mathrm{2}} }{dr} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{{ln}^{\mathrm{2}} \left({r}\right)}{\left({r}−\mathrm{1}\right)^{\mathrm{2}} }.{dr}+\frac{{ln}^{\mathrm{2}} \left(\frac{\mathrm{1}}{{r}}\right)}{\left(\frac{\mathrm{1}}{{r}}−\mathrm{1}\right)^{\mathrm{2}} }.\frac{{dr}}{{r}^{\mathrm{2}} }\right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{ln}^{\mathrm{2}} \left({r}\right){dr}}{\left({r}−\mathrm{1}\right)^{\mathrm{2}} }..{IBP}\Rightarrow \\ $$$$\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{−{ln}^{\mathrm{2}} \left({r}\right)}{{r}−\mathrm{1}}\right]_{{t}} ^{\mathrm{1}} +\mathrm{2}\int_{{t}} ^{\mathrm{1}} \frac{{ln}\left({r}\right)}{{r}\left({r}−\mathrm{1}\right)}{dr} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}^{\mathrm{2}} \left({t}\right)}{{t}−\mathrm{1}}+\mathrm{2}\int_{{t}} ^{\mathrm{1}} \frac{{ln}\left({r}\right)}{{r}−\mathrm{1}}{dr}−\mathrm{2}\int_{{t}} ^{\mathrm{1}} \frac{{ln}\left({r}\right)}{{r}}{dr} \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{ln}^{\mathrm{2}} \left({t}\right)}{{t}−\mathrm{1}}−\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}−{t}} \frac{{ln}\left(\mathrm{1}−{r}\right)}{{r}}{dr}+{ln}^{\mathrm{2}} \left({t}\right)\: \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\left(\frac{{ln}^{\mathrm{2}} \left({t}\right)}{{t}−\mathrm{1}}+{ln}^{\mathrm{2}} \left({t}\right)\right)+\mathrm{2}{Li}_{\mathrm{2}} \left(\mathrm{1}−{t}\right)\right] \\ $$$$=\underset{{t}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\frac{{tln}^{\mathrm{2}} \left({t}\right)}{{t}−\mathrm{1}}\right]+\mathrm{2}{Li}_{\mathrm{2}} \left(\mathrm{1}\right)\:\:{cause}\:{Li}_{\mathrm{2}} {is}\:{continus} \\ $$$$=\mathrm{2}{Li}_{\mathrm{2}} \left(\mathrm{1}\right)=\mathrm{2}.\frac{\pi^{\mathrm{2}} }{\mathrm{6}}=\frac{\pi^{\mathrm{2}} }{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 13/Nov/20

bravo bravo  sir  mindspower   thank you so much...

$${bravo}\:{bravo} \\ $$$${sir}\:\:{mindspower} \\ $$$$\:{thank}\:{you}\:{so}\:{much}... \\ $$

Commented by mindispower last updated on 13/Nov/20

thanx always a pleasur

$${thanx}\:{always}\:{a}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com