Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 121890 by oustmuchiya@gmail.com last updated on 12/Nov/20

Commented by liberty last updated on 12/Nov/20

(v) (x^2 +x^(−1) )^(12)  = Σ_(r = 0) ^(12)  (((12)),((  r)) ) (x^2 )^(12−r) .(x^(−1) )^r   the term independent of x, we get from  ⇒ x^(24−2r) .x^(−r)  = x^0  ; 24−3r = 0 , r = 8  gives  (((12)),((  8)) ) (x^2 )^4 (x^(−1) )^8  = ((8.7.6.5)/(4.3.2.1)) = 70. ▲

(v)(x2+x1)12=12r=0(12r)(x2)12r.(x1)rthetermindependentofx,wegetfromx242r.xr=x0;243r=0,r=8gives(128)(x2)4(x1)8=8.7.6.54.3.2.1=70.

Answered by bemath last updated on 12/Nov/20

(iv) (1+x)^n  = Σ_(k = 0) ^n  ((n),(k) ) 1^(n−k)  . x^k    the third term when k = 2   so the cooefficient of the third term  equal to  ((n),(2) ) = ((n(n−1))/2) = 21  ⇒ n^2 −n−42 = 0   ⇒(n−7)(n+6) = 0 → n = 7. ⧫

(iv)(1+x)n=nk=0(nk)1nk.xkthethirdtermwhenk=2sothecooefficientofthethirdtermequalto(n2)=n(n1)2=21n2n42=0(n7)(n+6)=0n=7.

Answered by TANMAY PANACEA last updated on 12/Nov/20

i)(1−(x/2))^5   =1−5C_1 ((x/2))+5C_2 ((x/2))^2 −5C_3 ((x/2))^3 +5C_4 ((x/2))^4 −((x/2))^5   ii)(1+(x/2))^5 +(1−(x/2))^5 ⇚note odd terms cancelled  =2[1+5C_2 ((x/2))^2 +5C_4 ((x/2))^4 ]  iii)put x=0.1to find (1.05)^5 +(0.95)^4

i)(1x2)5=15C1(x2)+5C2(x2)25C3(x2)3+5C4(x2)4(x2)5ii)(1+x2)5+(1x2)5noteoddtermscancelled=2[1+5C2(x2)2+5C4(x2)4]iii)putx=0.1tofind(1.05)5+(0.95)4

Terms of Service

Privacy Policy

Contact: info@tinkutara.com