Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 121950 by liberty last updated on 12/Nov/20

Calculate the sum Σ_(k = 1) ^n (1/( (√(k+(√(k^2 +1)))))) .

$$\mathrm{Calculate}\:\mathrm{the}\:\mathrm{sum}\:\underset{\mathrm{k}\:=\:\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{\mathrm{k}+\sqrt{\mathrm{k}^{\mathrm{2}} +\mathrm{1}}}}\:. \\ $$

Answered by bobhans last updated on 12/Nov/20

let a = k + (√(k^2 −1)) and b = k−(√(k^2 +1))   then we have → { ((a+b=2k)),((ab=k^2 −((√(k^2 −1)))^2 =1)) :}  so we get (1/( (√(k+(√(k^2 +1)))))) = (1/( (√a))) = b.  On the other hand, observe that  b = k−(√(k^2 −1)) =k−(√((k+1)(k−1)))  = ((k+1+k−1)/2)−(√((k+1)(k−1)))  = ((k+1−2(√((k+1)(k−1)))+k−1)/2)  = ((((√(k+1))−(√(k−1)))^2 )/2)  hence (√b) = (((√(k+1))−(√(k−1)))/( (√2)))  (√b) = (((√(k+1))−(√k)+(√k)−(√(k−1)))/( (√2)))  now the equation can be rewritte as   Σ_(k=1) ^n (1/( (√(k+(√(k^2 +1)))))) = Σ_(k = 1) ^n (((√(k+1))−(√k)+(√k)−(√(k−1)))/( (√2)))  by telescoping series gives  = (((√(n+1))−1)/( (√2))) + (((√n)−(√0))/( (√2)))  = (((√(n+1))+(√n)−1)/( (√2))).

$${let}\:{a}\:=\:{k}\:+\:\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}\:{and}\:{b}\:=\:{k}−\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}\: \\ $$$${then}\:{we}\:{have}\:\rightarrow\begin{cases}{{a}+{b}=\mathrm{2}{k}}\\{{ab}={k}^{\mathrm{2}} −\left(\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}\right)^{\mathrm{2}} =\mathrm{1}}\end{cases} \\ $$$${so}\:{we}\:{get}\:\frac{\mathrm{1}}{\:\sqrt{{k}+\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{{a}}}\:=\:{b}. \\ $$$${On}\:{the}\:{other}\:{hand},\:{observe}\:{that} \\ $$$${b}\:=\:{k}−\sqrt{{k}^{\mathrm{2}} −\mathrm{1}}\:={k}−\sqrt{\left({k}+\mathrm{1}\right)\left({k}−\mathrm{1}\right)} \\ $$$$=\:\frac{{k}+\mathrm{1}+{k}−\mathrm{1}}{\mathrm{2}}−\sqrt{\left({k}+\mathrm{1}\right)\left({k}−\mathrm{1}\right)} \\ $$$$=\:\frac{{k}+\mathrm{1}−\mathrm{2}\sqrt{\left({k}+\mathrm{1}\right)\left({k}−\mathrm{1}\right)}+{k}−\mathrm{1}}{\mathrm{2}} \\ $$$$=\:\frac{\left(\sqrt{{k}+\mathrm{1}}−\sqrt{{k}−\mathrm{1}}\right)^{\mathrm{2}} }{\mathrm{2}} \\ $$$${hence}\:\sqrt{{b}}\:=\:\frac{\sqrt{{k}+\mathrm{1}}−\sqrt{{k}−\mathrm{1}}}{\:\sqrt{\mathrm{2}}} \\ $$$$\sqrt{{b}}\:=\:\frac{\sqrt{{k}+\mathrm{1}}−\sqrt{{k}}+\sqrt{{k}}−\sqrt{{k}−\mathrm{1}}}{\:\sqrt{\mathrm{2}}} \\ $$$${now}\:{the}\:{equation}\:{can}\:{be}\:{rewritte}\:{as}\: \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{k}+\sqrt{{k}^{\mathrm{2}} +\mathrm{1}}}}\:=\:\underset{{k}\:=\:\mathrm{1}} {\overset{{n}} {\sum}}\frac{\sqrt{{k}+\mathrm{1}}−\sqrt{{k}}+\sqrt{{k}}−\sqrt{{k}−\mathrm{1}}}{\:\sqrt{\mathrm{2}}} \\ $$$${by}\:{telescoping}\:{series}\:{gives} \\ $$$$=\:\frac{\sqrt{{n}+\mathrm{1}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}}\:+\:\frac{\sqrt{{n}}−\sqrt{\mathrm{0}}}{\:\sqrt{\mathrm{2}}} \\ $$$$=\:\frac{\sqrt{{n}+\mathrm{1}}+\sqrt{{n}}−\mathrm{1}}{\:\sqrt{\mathrm{2}}}.\: \\ $$

Commented by liberty last updated on 12/Nov/20

correct   and great...

$$\mathrm{correct}\:\:\:\mathrm{and}\:\mathrm{great}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com