Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 121962 by bemath last updated on 13/Nov/20

  ∫_0 ^1  (dx/( ((x^2 −x^3 ))^(1/(3 )) )) ?

10dxx2x33?

Answered by MJS_new last updated on 13/Nov/20

∫_0 ^1 (dx/((x^2 −x^3 )^(1/3) ))=∫_0 ^1 (dx/(x^(2/3) (1−x)^(1/3) ))=       [t=(x^(1/3) /((1−x)^(1/3) )) → dx=3x^(2/3) (1−x)^(4/3) dt]  =3∫_0 ^∞ (dt/(t^3 +1))=∫_0 ^∞ (dt/(t+1))−(1/2)∫_0 ^∞ ((2t−1)/(t^2 −t+1))+(3/2)∫_0 ^∞ (dt/(t^2 −t+1))=  =[ln ∣t+1∣ −(1/2)ln (t^2 −t+1) +(√3)arctan ((2t−1)/( (√3)))]_0 ^∞ =  =((2π(√3))/3)

10dx(x2x3)1/3=10dxx2/3(1x)1/3=[t=x1/3(1x)1/3dx=3x2/3(1x)4/3dt]=30dtt3+1=0dtt+11202t1t2t+1+320dtt2t+1==[lnt+112ln(t2t+1)+3arctan2t13]0==2π33

Commented by bemath last updated on 13/Nov/20

how get upper limit ∞ and lower  limit 0 sir

howgetupperlimitandlowerlimit0sir

Commented by MJS_new last updated on 13/Nov/20

t=(x^(1/3) /((1−x)^(1/3) ))  x=0 ⇒ t=0  x→1^−  ⇒ t→∞

t=x1/3(1x)1/3x=0t=0x1t

Commented by MJS_new last updated on 13/Nov/20

corrected a typo...

correctedatypo...

Commented by bemath last updated on 13/Nov/20

oo yes thank you sir

ooyesthankyousir

Answered by Dwaipayan Shikari last updated on 13/Nov/20

∫_0 ^1 (dx/(x^(2/3) (1−x)^(1/3) ))  =∫_0 ^1 x^(−(2/3)) (1−x)^(−(1/3))   =β((1/3),(2/3))=((Γ((1/3))Γ((2/3)))/(Γ(1)))=(π/((sin(π/3))))=((2π)/( (√3)))

01dxx23(1x)13=01x23(1x)13=β(13,23)=Γ(13)Γ(23)Γ(1)=π(sinπ3)=2π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com