Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 121973 by bemath last updated on 13/Nov/20

 solve this equation     { ((xy+x+y=19)),((yz + y+z = 11)),((z+x+zx = 14)) :}

$$\:{solve}\:{this}\:{equation}\: \\ $$$$\:\begin{cases}{{xy}+{x}+{y}=\mathrm{19}}\\{{yz}\:+\:{y}+{z}\:=\:\mathrm{11}}\\{{z}+{x}+{zx}\:=\:\mathrm{14}}\end{cases} \\ $$

Commented by liberty last updated on 13/Nov/20

→ x(y+1)=19−y ∧ z(y+1)=11−y  ⇒ { ((x=((19−y)/(y+1)))),((z=((11−y)/(y+1)))) :} ⇔ substitution to eq(3)  give ((19−y)/(y+1)) + ((11−y)/(y+1)) + (((19−y)(11−y))/((y+1)^2 )) = 14  which is equivalent to   14(y+1)^2 −(y+1)(30−2y)−(19−y)(11−y)=0  simplifying to y^2 +2y−15=0 → { ((y_1 =3)),((y_2 =−5)) :}  the corresponding values of x and z   are computed from the previous formulas  we get  { ((x_1 =4 , x_2 =−6)),((z_1 =2 , z_2 =−4)) :}  so there are exactly two solution  triples (x,y,z): (4,3,2) and (−6,−5,−4).▲

$$\rightarrow\:\mathrm{x}\left(\mathrm{y}+\mathrm{1}\right)=\mathrm{19}−\mathrm{y}\:\wedge\:\mathrm{z}\left(\mathrm{y}+\mathrm{1}\right)=\mathrm{11}−\mathrm{y} \\ $$$$\Rightarrow\begin{cases}{\mathrm{x}=\frac{\mathrm{19}−\mathrm{y}}{\mathrm{y}+\mathrm{1}}}\\{\mathrm{z}=\frac{\mathrm{11}−\mathrm{y}}{\mathrm{y}+\mathrm{1}}}\end{cases}\:\Leftrightarrow\:\mathrm{substitution}\:\mathrm{to}\:\mathrm{eq}\left(\mathrm{3}\right) \\ $$$$\mathrm{give}\:\frac{\mathrm{19}−\mathrm{y}}{\mathrm{y}+\mathrm{1}}\:+\:\frac{\mathrm{11}−\mathrm{y}}{\mathrm{y}+\mathrm{1}}\:+\:\frac{\left(\mathrm{19}−\mathrm{y}\right)\left(\mathrm{11}−\mathrm{y}\right)}{\left(\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} }\:=\:\mathrm{14} \\ $$$$\mathrm{which}\:\mathrm{is}\:\mathrm{equivalent}\:\mathrm{to}\: \\ $$$$\mathrm{14}\left(\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} −\left(\mathrm{y}+\mathrm{1}\right)\left(\mathrm{30}−\mathrm{2y}\right)−\left(\mathrm{19}−\mathrm{y}\right)\left(\mathrm{11}−\mathrm{y}\right)=\mathrm{0} \\ $$$$\mathrm{simplifying}\:\mathrm{to}\:\mathrm{y}^{\mathrm{2}} +\mathrm{2y}−\mathrm{15}=\mathrm{0}\:\rightarrow\begin{cases}{\mathrm{y}_{\mathrm{1}} =\mathrm{3}}\\{\mathrm{y}_{\mathrm{2}} =−\mathrm{5}}\end{cases} \\ $$$$\mathrm{the}\:\mathrm{corresponding}\:\mathrm{values}\:\mathrm{of}\:\mathrm{x}\:\mathrm{and}\:\mathrm{z}\: \\ $$$$\mathrm{are}\:\mathrm{computed}\:\mathrm{from}\:\mathrm{the}\:\mathrm{previous}\:\mathrm{formulas} \\ $$$$\mathrm{we}\:\mathrm{get}\:\begin{cases}{\mathrm{x}_{\mathrm{1}} =\mathrm{4}\:,\:\mathrm{x}_{\mathrm{2}} =−\mathrm{6}}\\{\mathrm{z}_{\mathrm{1}} =\mathrm{2}\:,\:\mathrm{z}_{\mathrm{2}} =−\mathrm{4}}\end{cases} \\ $$$$\mathrm{so}\:\mathrm{there}\:\mathrm{are}\:\mathrm{exactly}\:\mathrm{two}\:\mathrm{solution} \\ $$$$\mathrm{triples}\:\left(\mathrm{x},\mathrm{y},\mathrm{z}\right):\:\left(\mathrm{4},\mathrm{3},\mathrm{2}\right)\:\mathrm{and}\:\left(−\mathrm{6},−\mathrm{5},−\mathrm{4}\right).\blacktriangle \\ $$$$ \\ $$

Commented by MJS_new last updated on 13/Nov/20

this is easy. it leads to a 2^(nd)  degree polynome,  no problems at all  (x∣y∣z)=(−6∣−5∣−4)∨(4∣3∣2)

$$\mathrm{this}\:\mathrm{is}\:\mathrm{easy}.\:\mathrm{it}\:\mathrm{leads}\:\mathrm{to}\:\mathrm{a}\:\mathrm{2}^{\mathrm{nd}} \:\mathrm{degree}\:\mathrm{polynome}, \\ $$$$\mathrm{no}\:\mathrm{problems}\:\mathrm{at}\:\mathrm{all} \\ $$$$\left({x}\mid{y}\mid{z}\right)=\left(−\mathrm{6}\mid−\mathrm{5}\mid−\mathrm{4}\right)\vee\left(\mathrm{4}\mid\mathrm{3}\mid\mathrm{2}\right) \\ $$

Commented by bemath last updated on 13/Nov/20

thank you both

$${thank}\:{you}\:{both}\: \\ $$

Commented by soumyasaha last updated on 13/Nov/20

 solve this equation     { ((xy+x+y=19)),((yz + y+z = 11)),((z+x+zx = 14)) :}    xy + x + y = 19    ⇒ xy + x + y +1= 19+1    ⇒ (1+x)(1+y)= 20.......(i)    Simiilarly,  (1+y)(1+z) = 12.......(ii)           and          (1+z)(1+x) = 15.......(iii)    Multiplying (i), (ii), (iii) we get,      (1+x)^2 (1+y)^2 (1+z)^2  = 20.12.15    Taking positive values,       (1+x)(1+y)(1+z)= 60.........(iv)   Dividing (iv) by (ii)       (1+x) = 5 ⇒ x = 4    similarly,  y = 3 and z = 2

$$\:{solve}\:{this}\:{equation}\: \\ $$$$\:\begin{cases}{{xy}+{x}+{y}=\mathrm{19}}\\{{yz}\:+\:{y}+{z}\:=\:\mathrm{11}}\\{{z}+{x}+{zx}\:=\:\mathrm{14}}\end{cases} \\ $$$$\:\:\mathrm{xy}\:+\:\mathrm{x}\:+\:\mathrm{y}\:=\:\mathrm{19} \\ $$$$\:\:\Rightarrow\:\mathrm{xy}\:+\:\mathrm{x}\:+\:\mathrm{y}\:+\mathrm{1}=\:\mathrm{19}+\mathrm{1} \\ $$$$\:\:\Rightarrow\:\left(\mathrm{1}+\mathrm{x}\right)\left(\mathrm{1}+\mathrm{y}\right)=\:\mathrm{20}.......\left(\mathrm{i}\right) \\ $$$$\:\:\mathrm{Simiilarly},\:\:\left(\mathrm{1}+\mathrm{y}\right)\left(\mathrm{1}+\mathrm{z}\right)\:=\:\mathrm{12}.......\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\mathrm{and}\:\:\:\:\:\:\:\:\:\:\left(\mathrm{1}+\mathrm{z}\right)\left(\mathrm{1}+\mathrm{x}\right)\:=\:\mathrm{15}.......\left(\mathrm{iii}\right) \\ $$$$\:\:\mathrm{Multiplying}\:\left(\mathrm{i}\right),\:\left(\mathrm{ii}\right),\:\left(\mathrm{iii}\right)\:\mathrm{we}\:\mathrm{get}, \\ $$$$\:\:\:\:\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{y}\right)^{\mathrm{2}} \left(\mathrm{1}+\mathrm{z}\right)^{\mathrm{2}} \:=\:\mathrm{20}.\mathrm{12}.\mathrm{15} \\ $$$$\:\:\mathrm{Taking}\:\mathrm{positive}\:\mathrm{values}, \\ $$$$\:\:\:\:\:\left(\mathrm{1}+\mathrm{x}\right)\left(\mathrm{1}+\mathrm{y}\right)\left(\mathrm{1}+\mathrm{z}\right)=\:\mathrm{60}.........\left(\mathrm{iv}\right) \\ $$$$\:\mathrm{Dividing}\:\left(\mathrm{iv}\right)\:\mathrm{by}\:\left(\mathrm{ii}\right) \\ $$$$\:\:\:\:\:\left(\mathrm{1}+\mathrm{x}\right)\:=\:\mathrm{5}\:\Rightarrow\:\mathrm{x}\:=\:\mathrm{4} \\ $$$$\:\:\mathrm{similarly},\:\:\mathrm{y}\:=\:\mathrm{3}\:\mathrm{and}\:\mathrm{z}\:=\:\mathrm{2} \\ $$$$ \\ $$

Answered by nimnim last updated on 13/Nov/20

 { ((xy+x+y=19)),((yz+y+z=11)),((z+x+zx=14)) :}⇒ { (((x+1)(y+1)=20.....(1))),(((y+1)(z+1)=12.....(2))),(((z+1)(x+1)=15.....(3))) :}  ⇒(x+1)^2 (y+1)^2 (z+1)^2 =20.12.15  ⇒(x+1)(y+1)(z+1)=±60.......(4)  solving (1),(2),(3) and (4) we get  (x+1)=±5, (y+1)=±4, (z+1)=±3  ⇒x=4,−6, y=3,−5, z=2,−4  ∴(x,y,z)= (4,3,2)∨ (−6,−5,−4)

$$\begin{cases}{{xy}+{x}+{y}=\mathrm{19}}\\{{yz}+{y}+{z}=\mathrm{11}}\\{{z}+{x}+{zx}=\mathrm{14}}\end{cases}\Rightarrow\begin{cases}{\left({x}+\mathrm{1}\right)\left({y}+\mathrm{1}\right)=\mathrm{20}.....\left(\mathrm{1}\right)}\\{\left({y}+\mathrm{1}\right)\left({z}+\mathrm{1}\right)=\mathrm{12}.....\left(\mathrm{2}\right)}\\{\left({z}+\mathrm{1}\right)\left({x}+\mathrm{1}\right)=\mathrm{15}.....\left(\mathrm{3}\right)}\end{cases} \\ $$$$\Rightarrow\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({y}+\mathrm{1}\right)^{\mathrm{2}} \left({z}+\mathrm{1}\right)^{\mathrm{2}} =\mathrm{20}.\mathrm{12}.\mathrm{15} \\ $$$$\Rightarrow\left({x}+\mathrm{1}\right)\left({y}+\mathrm{1}\right)\left({z}+\mathrm{1}\right)=\pm\mathrm{60}.......\left(\mathrm{4}\right) \\ $$$${solving}\:\left(\mathrm{1}\right),\left(\mathrm{2}\right),\left(\mathrm{3}\right)\:{and}\:\left(\mathrm{4}\right)\:{we}\:{get} \\ $$$$\left({x}+\mathrm{1}\right)=\pm\mathrm{5},\:\left({y}+\mathrm{1}\right)=\pm\mathrm{4},\:\left({z}+\mathrm{1}\right)=\pm\mathrm{3} \\ $$$$\Rightarrow{x}=\mathrm{4},−\mathrm{6},\:{y}=\mathrm{3},−\mathrm{5},\:{z}=\mathrm{2},−\mathrm{4} \\ $$$$\therefore\left({x},{y},{z}\right)=\:\left(\mathrm{4},\mathrm{3},\mathrm{2}\right)\vee\:\left(−\mathrm{6},−\mathrm{5},−\mathrm{4}\right) \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com