Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 121983 by Dwaipayan Shikari last updated on 13/Nov/20

∫_0 ^(π/2) sin^n x dx (In closed form)  (n∈N)

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{{n}} {x}\:{dx}\:\left({In}\:{closed}\:{form}\right)\:\:\left({n}\in\mathbb{N}\right) \\ $$

Commented by Dwaipayan Shikari last updated on 13/Nov/20

I have found  (1/2) ((Γ(((n+1)/2))Γ((1/2)))/(Γ((n/2)+1)))=(1/n).((Γ(((n+1)/2))Γ((1/2)))/(Γ((n/2))))

$${I}\:{have}\:{found} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{n}}{\mathrm{2}}+\mathrm{1}\right)}=\frac{\mathrm{1}}{{n}}.\frac{\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)\Gamma\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\Gamma\left(\frac{{n}}{\mathrm{2}}\right)} \\ $$

Commented by mnjuly1970 last updated on 13/Nov/20

perfect  mr  dwaipayan..

$${perfect}\:\:{mr}\:\:{dwaipayan}.. \\ $$

Answered by mnjuly1970 last updated on 13/Nov/20

we know :  2∫_0 ^( (π/2)) sin^(2p−1) (x)cos^(2q−1) (x)dx      =β(p,q)=((Γ(p)Γ(q))/(Γ(p+q)))    I=(1/2)(2∫_0 ^( (π/2)) sin^(2((n/2)+(1/2))−1) (x)cos^(2((1/2))−1) (x)dx      (1/2)β(((n+1)/2),(1/2))=(1/2)((Γ(((n+1)/2))(√π))/(Γ((n/2)+1)))       (1/2) ((Γ(((n+1)/2))(√π))/((n/2)Γ((n/2))))=(1/n) ((Γ(((n+1)/2))(√π))/(Γ((n/2))))

$${we}\:{know}\::\:\:\mathrm{2}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}{p}−\mathrm{1}} \left({x}\right){cos}^{\mathrm{2}{q}−\mathrm{1}} \left({x}\right){dx} \\ $$$$\:\:\:\:=\beta\left({p},{q}\right)=\frac{\Gamma\left({p}\right)\Gamma\left({q}\right)}{\Gamma\left({p}+{q}\right)} \\ $$$$\:\:\mathrm{I}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}\left(\frac{{n}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}} \left({x}\right){cos}^{\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)−\mathrm{1}} \left({x}\right){dx}\right. \\ $$$$\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\beta\left(\frac{{n}+\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{2}}\frac{\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)\sqrt{\pi}}{\Gamma\left(\frac{{n}}{\mathrm{2}}+\mathrm{1}\right)} \\ $$$$\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)\sqrt{\pi}}{\frac{{n}}{\mathrm{2}}\Gamma\left(\frac{{n}}{\mathrm{2}}\right)}=\frac{\mathrm{1}}{{n}}\:\frac{\Gamma\left(\frac{{n}+\mathrm{1}}{\mathrm{2}}\right)\sqrt{\pi}}{\Gamma\left(\frac{{n}}{\mathrm{2}}\right)} \\ $$

Commented by Dwaipayan Shikari last updated on 13/Nov/20

Thanking you for confirmation sir!

$${Thanking}\:{you}\:{for}\:{confirmation}\:{sir}! \\ $$

Commented by mnjuly1970 last updated on 13/Nov/20

 you are welcom .mr Dwaipayan  grateful for your nice questions..

$$\:{you}\:{are}\:{welcom}\:.{mr}\:{Dwaipayan} \\ $$$${grateful}\:{for}\:{your}\:{nice}\:{questions}.. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com