Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 121985 by Dwaipayan Shikari last updated on 13/Nov/20

Σ_(n=1) ^∞ (1/(n (((4n)),((2n)) )))

n=11n(4n2n)

Commented by Dwaipayan Shikari last updated on 13/Nov/20

Σ_(n=1) ^∞ (((2n!)^2 )/(n(4n!)))  =Σ_(n=1) ^∞ ((Γ(2n+1)Γ(2n+1))/(nΓ(2n+1)))  =2Σ_(n=1) ^∞ ((nΓ(2n)Γ(2n+1))/(nΓ(4n+1)))  =2Σ_(n=1) ^∞ β(2n,2n+1)  =2Σ_(n=1) ^∞ ∫_0 ^1 x^(2n−1) (1−x)^(2n) dx  =2∫_0 ^1 Σ_(n=1) ^∞ x^(2n−1) (1−x)^(2n)  dx              S=x(1−x)^2 +x^3 (1−x)^4 +...  −Sx^2 (1−x)^2 =−x^3 (1−x)^4 −x^5 (1−x)^6 −...  S(1−x^2 +2x^3 −x^4 )=x(1−x)^2   S=((x(1−x)^2 )/(1−x^2 +2x^3 −x^4 ))  So  =2∫_0 ^1 ((x(1−x)^2 )/(1−x^2 +2x^3 −x^4 ))dx  =−2∫_0 ^1 ((−x^3 +2x^2 −x)/(1−x^2 +2x^3 −x^4 ))dx  =−2∫_0 ^1 ((−2x^3 +3x^2 −x)/(1−x^2 +2x^3 −x^4 ))+((x^3 −x^2 )/(1−x^2 +2x^3 −x^4 ))dx  =−∫_0 ^1 ((−4x^3 +6x^2 −2x)/(1−x^2 +2x^3 −x^4 ))+2∫((x^2 −x^3 )/(1−x^2 +2x^3 −x^4 ))dx  =−[log(1−x^2 +2x^3 −x^4 )]_0 ^1 +2∫((x^2 (1−x))/(1−x^2 (1−x)^2 ))dx

n=1(2n!)2n(4n!)=n=1Γ(2n+1)Γ(2n+1)nΓ(2n+1)=2n=1nΓ(2n)Γ(2n+1)nΓ(4n+1)=2n=1β(2n,2n+1)=2n=101x2n1(1x)2ndx=201n=1x2n1(1x)2ndxS=x(1x)2+x3(1x)4+...Sx2(1x)2=x3(1x)4x5(1x)6...S(1x2+2x3x4)=x(1x)2S=x(1x)21x2+2x3x4So=201x(1x)21x2+2x3x4dx=201x3+2x2x1x2+2x3x4dx=2012x3+3x2x1x2+2x3x4+x3x21x2+2x3x4dx=014x3+6x22x1x2+2x3x4+2x2x31x2+2x3x4dx=[log(1x2+2x3x4)]01+2x2(1x)1x2(1x)2dx

Terms of Service

Privacy Policy

Contact: info@tinkutara.com