All Questions Topic List
Geometry Questions
Previous in All Question Next in All Question
Previous in Geometry Next in Geometry
Question Number 121985 by Dwaipayan Shikari last updated on 13/Nov/20
∑∞n=11n(4n2n)
Commented by Dwaipayan Shikari last updated on 13/Nov/20
∑∞n=1(2n!)2n(4n!)=∑∞n=1Γ(2n+1)Γ(2n+1)nΓ(2n+1)=2∑∞n=1nΓ(2n)Γ(2n+1)nΓ(4n+1)=2∑∞n=1β(2n,2n+1)=2∑∞n=1∫01x2n−1(1−x)2ndx=2∫01∑∞n=1x2n−1(1−x)2ndxS=x(1−x)2+x3(1−x)4+...−Sx2(1−x)2=−x3(1−x)4−x5(1−x)6−...S(1−x2+2x3−x4)=x(1−x)2S=x(1−x)21−x2+2x3−x4So=2∫01x(1−x)21−x2+2x3−x4dx=−2∫01−x3+2x2−x1−x2+2x3−x4dx=−2∫01−2x3+3x2−x1−x2+2x3−x4+x3−x21−x2+2x3−x4dx=−∫01−4x3+6x2−2x1−x2+2x3−x4+2∫x2−x31−x2+2x3−x4dx=−[log(1−x2+2x3−x4)]01+2∫x2(1−x)1−x2(1−x)2dx
Terms of Service
Privacy Policy
Contact: info@tinkutara.com